Multi-criteria optimization of fasteners placing while aircraft assembling by local exhaustive search

DOI: 10.34759/trd-2020-111-20


Pogarskaia T. A.

Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia



The article is devoted to the problem of temporary fasteners arrangement optimizing while aircraft assembly. Fastener number minimization keeping the final product assembly quality is one of the key factors of production intensification in the aerospace industry. The total labor intensity of the airframe assembly process, as well as extensive manual labor employing make the entire manufacturing process of the product multi-stage and time-consuming. Production acceleration requires its intermediate stages optimization.

The article presents three different settings of temporary fasteners arrangement optimization problems, which are studied further at optimization of a certain initial arrangement for the airframe assembly model. A gradientless technique based on local exhaustive search is considered as an optimization technique. Several specifics of the problem under consideration contributed to this technique selection. Firstly, the optimization problem being considered is combinatorial and relates to the NP class. Correspondingly, it is not possible to calculate derivatives, and global optimum can be found by the exhaustive search technique. The local exhaustive search, in its turn, does not require derivatives calculation of the target function. It is based on the idea of the exhaustive search of solutions in the diminished area and consists of independent iterations, as well as allows make modifications into optimization criteria and modify the target function.

Setting of the optimization problems, and the technique, described in the article, are being tested on airframe assembling model. Various multi-criteria optimization problems are being considered and tested, which application is aimed at avoiding the impact of the parameters, being set by the general problem setting, on the result. The article demonstrates that even two different target functions combination ensures more qualitative and stable results.


aircraft assembling, assembling optimization, method of local variations, exhaustive search, gradientless optimization, contact problem, fasteners


  1. Bakker O.J., Popov A.A. and Ratchev S.M. Variation analysis of automated wing box assembly, The 50th CIRP Conference on Manufacturing Systems, Procedia CIRP 63, 2017. URL:

  2. Liu S.C., Hu S.J. Variation simulation for deformable sheet metal assemblies using finite element methods, Journal of Manufacturing Science and Engineering, 1997, no. 119 (3), pp. 368 – 374.

  3. Muelaner J.E. and Maropoulos P. Large Scale Metrology In Aerospace Assembly, Proceedings of 5th International Conference on Digital Enterprise Technology, Nantes, France, 22-24 October 2008, available at:

  4. Yang D., Qu W., Ke Y. `Evaluation of residual clearance after prejoining and pre-joining scheme optimization in aircraft panel assembly', Assembly Automation, 2016, no. 36(4), pp. 376 - 387.

  5. Chickermane H., Gea H.C., Yang R.-J., Chuang C.-H. Optimal fastener pattern design considering bearing loads, Structural Optimization, 1999, no. 17(2), pp. 140 - 146.

  6. Oinonen A., Tanskanen P., Bjork T., Marquis G. Pattern optimization of eccentrically loaded multi-fastener joints, Structural and Multidisciplinary Optimization, 2009, no. 40(1), pp. 597 – 609. DOI: 10.1007/s00158-009-0392-2

  7. Eck C., Janusek J., Krbec M. Unilateral contact problems. Variational methods and existing theorems, Taylor and Francis, 2005, 398 p. DOI:

  8. Hlavacek I., Haslinger J., Necas J., Lovisek J. Solution of variational inequalities in mechanics, Springer-Verlag, 1998. DOI:10.1007/978-1-4612-1048-1

  9. Lupuleac S.V., Petukhova M.V., Shinder Y.K., Bretagnol B. Methodology for solving contact problem during riveting process, SAE International Journal of Aerospace, 2011, no. 4 (2), pp. 952 - 957. DOI:10.4271/2011-01-2582

  10. Petukhova M.V., Lupuleac S.V., Shinder Y.K., Smirnov A.B., Yakunin S.A., Bretagnol B. Numerical approach for airframe assembly simulation, Journal of Mathematics in Industry, 2014, no. 4 (8), pp. 12. DOI: 10.1186/2190-5983-4-8

  11. Stefanova M., Yakunin S., Petukhova M., Lupuleac S., Kokkolaras M. An interior-point method based solver for simulation of aircraft parts riveting, Engineering Optimization, 2017, no. 50(5), pp. 781 - 796. DOI: 10.1080/0305215X.2017.1355367

  12. Marx D. A parameterized view on matroid optimization problems, Theoretical Computer Science, 2009, no. 410(44), pp. 4471 - 4479. DOI: 10.1016/j.tcs.2009.07.027

  13. Ashurkov I.S., Leshko N.A., Kakaev V.V. Trudy MAI, 2016, no. 87, available at:

  14. Ryazantseva O.V. Trudy MAI, 2011, no. 45, available at:

  15. Pogarskaia T., Churilova M., Petukhova M., Petukhov E. Simulation and optimization of aircraft assembly process using supercomputer technologies, Communications in computer and information science, 2019, vol. 965, pp. 367 - 378.

  16. Zaitseva N., Pogarskaia T., Minevich O., Shinder J., Bonhomme E. Simulation of Aircraft Assembly Via ASRP Software, SAE Technical Papers, 2019, September, DOI:10.4271/2019-01-1887

  17. Lupuleac S., Petukhova M., Shinder Y., Bretagnol B. Methodology for solving contact problem during riveting process, SAE Technical Paper, 2011, pp. 952 – 957. DOI:10.4271/2011-01-2582

  18. Lupuleac S., Zaitseva N., Stefanova M., Berezin S., Shinder J., Petukhova M., Bonhomme E. Simulation of the wing-to-fuselage assembly process, Journal of Manufacturing Science and Engineering, Transactions of the ASME; 2019, no. 141(6), DOI: 10.1115/IMECE2018-87058

  19. Lupuleac S., Zaitseva N., Stefanova M., Berezin S., Shinder J., Petukhova M., Bonhomme E. Simulation and optimization of airframe assembly process, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2018, vol. 2. DOI: 10.1115/IMECE2018-87058

  20. Shtoier R. Mnogokriterial'naya optimizatsiya. Teoriya, vychisleniya i prilozheniya (Multi-criteria optimization. Theory, calculations, and applications), Moscow, Radio i svyaz', 1992, 504 p.

  21. Germeier Yu.B. Vvedenie v teoriyu issledovaniya operatsii (Introduction to the operations research theory), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1971, 384 p.

Download — informational site MAI

Copyright © 2000-2022 by MAI