Numerical simulation of detonation initiation in a kerosene-air gas-droplet mixture impinging shock wave

Fluid, gas and plasma mechanics


Аuthors

Gidaspov V. Y.*, Moskalenko O. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: gidaspov@mai.ru
**e-mail: moskalenko-o@yandex.ru

Abstract

The paper studies the process of detonation initiation of a of gas-droplet kerosene-air mixture incidental shock wave in a shock tube. A simplified physical-mathematical model of the process was developed. Drops of hydrocarbon fuel are considered as a single component of fuel droplets evaporation and gas-phase chemical transformations. The paper focuses on mass fraction droplets in the processes of detonation wave formation and propagation in the channel.

The authors propose consistent methods of recovery according to the reference data on the thermal part of the Gibbs potential of gasoline, kerosene and diesel fuel in liquid and gaseous states.

The results, obtained by numerical simulation time scanning process, encompass the following:

  • Interaction of the incident shock wave with kerosene-air gas-droplet mixture; heating of the combustible mixture; evaporation of kerosene droplets with the subsequent exothermic gas-phase chemical transformations;

  • Formation of compression waves;

  • Formation and distribution of the detonation wave;

  • Output of the detonation wave in the mode close to the stationary one.

By computation, we found and observed experimentally two fire-ignition modes of the combustible mixture.

Keywords:

numerical simulation, metallic fuel, chemical reactions, phase transitions, combustion, detonation

References

  1. Spolding. D.B. Osnovy teorii goreniya (Combustion theory fundamentals), Moscow, Gosenergoizdat, 1959, 320 p.

  2. Dregalin A.F., Zenukov I.A., Kryukov V.G., Naumov V.I. Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energoustanovkakh (Mathematical modeling of high temperature processes in power plants, Kazan, Izd-vo Kazanskogo universiteta, 1985, 263 p.

  3. Mitrofanov V.F. Voprosy ispol’zovaniya detonatsii v tekhnologicheskikh protsessakh (Detonation implementation to technological processes), Novosibirsk, SO AN SSSR, 1986, 143 p.

  4. Zhdan S.A. Mekhanika reagiruyushchikh sred i ee prilozheniya. Sbornik trudov. Novosibirsk, Nauka, 1989, pp. 96-106.

  5. High-Speed Deflagation and Detonation: Fundamentals and Control/[Edited by G.D.Roy, S.M.Frolov, D.W.Netzer and A.A.Borisov], Moscow, ELEX-KM Publishers, 2001, 384 p.

  6. Varnatts Yu., Maas U.,Dibbl R. Gorenie. Fizicheskie i khimicheskie aspekty, modelirovanie, eksperimenty, obrazovanie zagryaznyayushchikh veshchstv (Physical and chemical aspects, simulation, experiments, contaminating agents formation), Moscow, Fizmatlit, 2003, 352 p.

  7. Mitrofanov V.V. Detonatsiya gomogennykh i geterogennykh system (Detonation of homogeneous and heterogeneous systems), Novosibirsk, Institut gidrodinamiki im. M.A. Lavrent’eva SO RAN, 2003, 200 p.

  8. Frolov S.M., Basevich V.Ya. Zakony goreniya. Sbornik trydov, Moscow, Energomash, 2006, pp. 130-159.

  9. Pirumov U.G. Matematicheskoe modelirovanie v problemakh okhrany vozdushnogo basseina (Mathematical modeling in problems of air space protection), Moscow, Izd-vo MAI, 2001, 340 p.

  10. Gidaspov V.Yu., Karpov A.A. Matematicheskoe modelirovanie, 1999, vol. 11, no.2, pp. 65-73.

  11. Gidaspov V.Yu., Strel’tsov V.Yu. Matematicheskoe modelirovanie, 2004, vol. 16, no. 6, pp.123-126.

  12. Volkov V.A., Gidaspov V.Yu., Pirumov U.G., Strel’tsov V.Yu. Teplofizika vysokikh temperatur, 1998, vol. 36. no. 3, pp. 424-434.

  13. Gidaspov V.Yu., Moskalenko O.A, Pirumov U.G. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 2, pp. 51-61.

  14. Gidaspov V.Yu. Trudy MAI, 2011, no. 49: http://www.mai.ru/science/trudy/published.php?ID=28605&PAGEN_2=3

  15. Gidaspov V.Yu., Moskalenko O.A., Pirumov U.G. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 1, pp. 169-177.

  16. Mosolov S.V., Sidlerov D.A. Trudy MAI, 2012, no. 59: http://www.mai.ru/science/trudy/published.php?ID=34989

  17. Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2014, no. 77: http://www.mai.ru/science/trudy/published.php?ID=53138

  18. Vargaftik N.B. Teplofizicheskie svoistva nekotorykh aviatsionnykh topliv v zhidkom i gazoobraznom sostoyaniyakh (Thermo-physical properties of some aviation fuels in liquid and gaseous states), Moscow, Oborongiz, 1961, 162 p.

  19. Dubovkin N.F. Spravochnik po uglevodorodnym toplivam i ikh produktam sgoraniya (Handbook on hydrocarbon fuels and their combustion products), Moscow, Gosenergoizdat, 1962, 288 p.

  20. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on thermophysical properties of gases and liquids), Moscow, Fizmatgiz, 1963, 708 p.

  21. Zhorov Yu.M. Modelirovanie fiziko-khimicheskikh protsessov neftepererabotki i neftekhimii (Physicochemical processes modeling of oil refining and petrochemistry), Moscow, Khimiya, 1978, 376 p.

  22. Rid R., Prausnits Dzh., Shervud T. Svoistva gazov i zhidkostei (Properties of gases and liquids), Leningrad, Khimiya, 1982, 592 p.

  23. Bol’shakov G.F. Fiziko-khimicheskie osnovy primeneniya topliv i masel (Fuels and oils implementation physicochemical basics), Novosibirsk, Nauka, 1987, 209 p.

  24. Gurvich L.V., Veic I.V., Medvedev V.A. Termodinamicheskie svoistva individualnih veshestv (Thermodynamic properties of individual substances), Moscow, Nauka, 1978, 328 p.

  25. Basevich V.Ya., Frolov S.M. Khimicheskaya fizika, 2006, vol. 25, no. 6, pp. 54-62.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход