Condensed phase effect of acoustic instability of solid propellant power plant

Thermal engines, electric propulsion and power plants for flying vehicles


Kuroedov A. A.*, Laptev I. V.**, Borisov D. M.***

Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia



The purpose of this work consists in numerical study of the condensed phase effect on the finite amplitude disturbances in the solid propellant power plant (SPPP) combustion chamber. The goal of the study is determining the decay factor for the first two combustion chamber longitudinal oscillations eigen modes, and condensed phase particles optimal size, leading to maximum decay of the disturbances under study.

Two-phase ambience motion is considered as a multiphase flow of the gas phase and dummy gas particles. The condensed phase represents solid rigid spherical particles of the same size and weight. Density, temperature and heat capacity of the particle are considered constant over its volume. Force and thermal interactions between carrier ambience and the particles are accounted for.

The problem is solved in the quasi-unidimensional set up. Computational domain corresponding to the SPPP duct is split into two subdomains: the combustion chamber and the nozzle. The problem is solved numerically by Godunov method, based on arbitrary interruption decomposing problem solution.

Time dependencies of relative deviation of pressure in model set chamber for various frequencies and condensed phase solid particles radiuses were obtained in the course of numerical experiment. Based on the obtained distributions decay factor values were determined for the first two gas phase carrier longitudinal oscillations. The particles size range corresponds to the particles size in solid propellant, used in actual power plants.

Solid particles optimal sizes leading to maximum decay of finite amplitude disturbances were determined as a result of numerical simulation. The obtained data conforms the results obtained while solving the equation of motion of a solitary solid particle in a continuous medium.

Further analysis shows that there is optimum particle size for each mode, which causes the greatest attenuation of finite amplitude perturbations. These results correspond to the results obtained by solving the motion equation of a solitary solid particle in a continuous medium.

The developed mathematical model is suitable for predicting the evolution of finite amplitude disturbances in the SPPP ducts.


acoustic instability, two-phase, decay factor, dissipation


  1. Blomshield F.S. Historical Perspective of Combustion Instability in Motors: Case Studies, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11, 2001, Salt Lake City, Utah, 2001, pp. 1-14.

  2. Blomshield F.S. Lessons Learned In Solid Rocket Combustion Instability, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8 — 11 July 2007, Cincinnati, OH., 2007, pp. 1-19.

  3. Prisnjakov V.F. Dinamika raketnykh dvigatelei tverdogo topliva (Dynamics of the solid propellant rocket engines), Moscow, Mashinostroenie, 1984, 248 p.

  4. Kashina I.A., Sal’nikov A.F. Trudy MAI, 2010, no. 65:

  5. Orlov B.V. Termodinamicheskie i ballisticheskie osnovy proektirovaniya raketnykh dvigatelei na tverdom toplive (Thermodynamic and ballistic principles of the solid propellant rocket engines design), Moscow, Mashinostroenie, 1979, 392 p.

  6. Nigmatulin R.I. Dinamika mnogofaznykh sred. Ch. 1 (A multiphase medium dynamics. Part 1), Moscow, Nauka, 1987, 464 p.

  7. Dreif vklyuchenii v akusticheskikh polyakh s uchetom nestatsionarnykh sil:

  8. Carlson, D.J., Hoglund R.F. Particle drag and heat transfer in rocket nozzles, AIAA Journal, 1964, vol. 2, no. 11, pp. 1980-1984.

  9. Samarskij A.A., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference methods for solving gas dynamics problems), Moscow, Nauka, 1992, 424 p.

  10. Kulikovskij A.G., Pogorelov N.V., Semenov A.Ju. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii (Mathematical problems in the hyperbolic systems numerical solution), Moscow, FIZMATLIT, 2001, 608 p.

  11. Laptev I.V., Semjonov P.A., Degtjarjov S.A. Avtomatizatsiya. Sovremennye tekhnologii, 2016, no.3, pp. 14-18.

Download — informational site MAI

Copyright © 2000-2020 by MAI