Construction of membership functions of radio-electronic equipment parameters on experimental data

Radio engineering, including TV systems and devices


Аuthors

Zakovryashin A. I.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: zai999@mail.ru

Abstract

Estimation of a radio-electronic equipment object’s workability supposes its diagnosis.
Diagnosis of the equipment is performed based on continuous mathematical model.
Measurement and a priori information on an object is being accumulated.
As additional a priori information, the author suggests to employ statistical properties of the object’s parameters.
Studying technical documentation on the equipment objects allowed reveal three types of tolerance ranges.
The article formulated the requirements to the membership functions of parameters with various types of tolerance ranges.
The procedure of construction of membership functions (operability functions) of parameters was developed.
The article presents the examples of constructing of membership functions of parameters based on histograms.
Increasing of a priori information volume used for processing by the described method will allow increase the accuracy of obtaining quantitative estimations of technical states.

Keywords:

radio-electronic equipment, types of fields of admissions of parameters, requirements to functions of accessories, creation of functions of accessories of parameters for various types of fields of admissions, examples

References

  1. Na MAKS-2017 predstavili «nervnuyu sistemu» dlya istrebitelya T-50, URL: http://aviation21.ru/na-maks-2017-predstavili-nervnuyu-sistemu-dlya-istrebitelya-t-50/

  2. Gorodetskii V.I., Dmitriev A.K., Markov V.M. el at. Elementy teorii ispytanii i kontrolya tekhnicheskikh sistem (Elements of tests theory and technical systems monitoring), Leningrad, Energiya, 1978, 192 p.

  3. Zakovryashin A.I. Trudy MAI, 2014, no. 72. available at: http://trudymai.ru/eng/published.php?ID=47270

  4. Shtovba S.D. Vvedenie v teoriyu nechetkikh mnozhestv i nechetkuyu logiku (Introduction to the theory of fuzzy sets and fuzzy logic), Vinnitsa, UNIVERSUM-Vinnitsa, 2001, 756 p.

  5. Dubov I.R., Diab T.O. Otsenivanie funktsii prinadlezhnosti nechetkogo mnozhestva po eksperimental’nym dannym. Materialy konferentsii «Novye tekhnologii proektirovaniya izdelii mikroelektroniki», Vladimir, Vladimirskii gosudarstvennyi universitet, 2002, pp. 146-147.

  6. Leonenkov A.V. Nechetkoe modelirovanie v srede MATLAB i FuzzyTech (Indistinct simulation in MATLAB and FuzzyTech), Saint-Petersburg, BKhV — Peterburg, 2003, 736 p.

  7. Pospelov D.A. Situatsionnoe upravlenie: teoriya i praktika (Situation control: theory and practice), Moscow, Nauka, 1986, 288 p.

  8. Kofman A. Vvedenie v teoriyu nechetkikh mnozhestv (Introduction to the theory of fuzzy sets), Moscow, Radio i svyaz’, 1982, 432 p.

  9. Dzh. Van Gig. Prikladnaya obshchaya teoriya system (Applied general systems theory), Moscow, Mir, 1981, 734 p.

  10. Terent’ev M.N. Trudy MAI, 2017, no. 94, 2017, available at: http://trudymai.ru/eng/published.php?ID=81149

Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход