УДК 532.528.533.6.0

Влияние гидродинамических особенностей на поведение свободной поверхности жидкости в высокоскоростном потоке

В.П. Махров, А.А. Глущенко, А.И. Юрьев

Аннотация

В статье рассматриваются результаты теоретического исследования поведения свободных границ каверны, формируемой за телом в высокоскоростном потоке жидкости с помощью гидродинамических особенностей. В практических задачах в качестве таких особенностей используются кольцевые крылья с соответствующим профилем в сечении. Показано, что при использовании кольцевых вихревых особенностей и метода численного решения уравнений Навье-Стокса в среде Flow Vision можно формировать каверны с границами в заданных пределах.

Ключевые слова: каверна; модели; кольцевое крыло; численное решение.

Введение

Течения со свободными поверхностями обладают специфическими свойствами. B высокоскоростной гидродинамике к таким течениям относят явления кавитации, воронкообразования, волнообразования и др. В данной работе (в постановке 2D) рассматривается гидродинамика свободных границ каверны, формируемых искусственным за телом-кавитатором под воздействием внешних «гидродинамических путём особенностей». В практической реализации такими «особенностями» являются кольцевые крылья (насадки) с различными профилями в сечении, а формируемые с их участием кавитационные течения в отличие от «обычных» каверн, являются течениями многопараметрическими и соответствуют течениям Лайтхилла – Шушпанова [1].

В отличие от метода исследования подобных течений рассмотренного в работах [1] и [2] для сложных течений, к которым относятся и рассматриваемые в данной работе, в настоящее время широко используются CAD – программы, что делает использование CFD – комплексов, поддерживающих импорт графической модели непосредственно в расчётную среду, удобным для исследования. В данной работе используется отечественный программный комплекс Flow Vision (далее – FV), базирующийся на методе численного

1

решения универсальных уравнений Навье-Стокса, описывающих динамику потока жидкости, взаимодействующей с каверноформирующими элементами.

Программный комплекс FV основан на конечно-объемном методе решения уравнений гидродинамики и использует прямоугольную адаптивную сетку с локальным измельчением. Для аппроксимации криволинейной геометрии с повышенной точностью FV использует технологию подсеточного разрешения геометрии. Использование этой технологии позволило решить проблему автоматической генерации сетки; чтобы сгенерировать сетку, достаточно задать всего лишь несколько параметров, после чего сетка автоматически генерируется для расчетной области, имеющей геометрию любой степени сложности.

Постановка задачи исследования.

Ставится задача по исследованию влияния присутствия кольцевого крыла и его положения относительно кавернообразующего элемента – кавитатора на границы формирующейся за кавитатором каверны при заданных условиях течения. Дополнительно провести численное решение задачи для условий поддува (вентиляции) каверны газом.

Решение задачи осуществляется поэтапно путём: задания области расчета; выбора математической модели движения; задания граничных условий; генерации расчетной сетки; задания параметров численного моделирования; получения результатов моделирования и их анализа. Рассмотрим кратко принятые решения по этапам.

1. Область расчёта – двухмерная поверхность.

2. Математическая модель движения.

Принятая модель движения несжимаемой жидкости описывает течения вязкой жидкости/газа при малых числах Маха (M < 0.3), малых и больших (турбулентных) числах Рейнольдса. Допускаются малые изменения плотности, что позволяет естественным образом учесть подъёмную силу. В модель входят уравнения Навье-Стокса, энергии и уравнение конвективно-диффузионного переноса концентрации примеси. Рабочая среда является потоком несжимаемой, идеальной и невесомой жидкостью. Это означает, что будут решаться уравнения Навье-Стокса, уравнение переноса энергии и уравнения переноса турбулентных функций. Система указанных уравнений имеет вид

$$(\partial \rho V / \partial t) + \nabla \rho (V \times V) = -\nabla P + \nabla ((\mu + \mu_t) (\nabla V + (\nabla V)^T)) + S;$$
(1)

$$(\partial \rho / \partial t) + \nabla (\rho V) = 0, \qquad (2)$$

где µ_t – турбулентная вязкость; *S* – источник

$$S = (\rho - \rho_{\text{гид}})g + \rho B + R, \tag{3}$$

В формуле (3) обозначены: *В* – силы вращения; *R* – силы изотропного и/или анизотропного фильтра сопротивления; *ρ*_{гид} – гидростатическая плотность среды.

Граничным условием для кавитационных течений принято считать постоянство скорости на свободной границе каверны. В качестве эквивалента в данном случае можно использовать (в предположении квазистационарности потока в момент времени t) число кавитации о в виде

$$\sigma = 2(p - p_{\sigma}) / \rho V^2 = const, \tag{4}$$

где *p* – абсолютное давление в потоке; *p*_σ – давление в каверне. Давление в каверне измеряется путем создания рассекающих плоскостей в узловых точках пространства.

Примем для дальнейших расчётов в качестве примера следующие входные физические параметры модели движения: скорость V = 100 м/с; пульсации – 0,01; масштаб турбулентности – 0,01м; минимальное давление p = 100 Па; молекулярная вязкость – μ =1.82[·]10⁻⁵[кг м⁻¹ с⁻¹].

3. Генерация расчётной сетки.

Для разрешения малых деталей геометрии расчетной области и высоких градиентов рассчитываемых величин используется прямоугольная адаптивная локально измельченная сетка (АЛИС). Сущность технологии АЛИС заключается в следующем. Во всей расчетной области вводится прямоугольная сетка. Выделяются подобласти с особенностями геометрии или течения, в которых необходимо провести расчет на более мелкой сетке по сравнению с исходной. При этом, расчетная ячейка, в которую попала выделяемая особенность, делится на 8 равных ячеек в трехмерном случае, а в двумерном – на 4 ячейки. Далее, если необходимо, то ячейки делятся еще раз и так до достижения необходимой точности. Ячейки начальной сетки называются ячейками уровня 0, ячейки, получаемые измельчением уровня 0, называются ячейками уровня 1 и т.д. При генерации АЛИС накладывается условие, что гранями и ребрами могут граничить друг с другом только ячейки с номерами уровней, отличающимися не более чем на единицу. В отличие от традиционных неструктурированных и структурированных мультиблоковых сеток ячейки АЛИС имеют переменное количество соседей – в трехмерном случае по грани с ячейкой могут соседствовать либо одна, либо

3

четыре соседа. Это обстоятельство затрудняет реализацию численных методов с использованием АЛИС.

Однако АЛИС имеет значительные преимущества сравнению по с распространенными сетками. Во-первых, большая скорость генерации сетки. Во-вторых, АЛИС не предъявляет высоких требований к оперативной памяти компьютера по сравнению с неструктурированными сетками. Это обусловлено древовидной структурой АЛИС, при которой каждая ячейка связана с сеткой нулевого уровня, имеющей полную геометрическую информацию. В-третьих, при генерации АЛИС не появляются «плохие ячейки», которые имеют слишком большие отношения площадей граней. При использовании АЛИС геометрия объектов в расчетной области аппроксимируется первым порядком точности -"ступеньками". Повышение порядка разбиения сетки около поверхностей позволяет уменьшить вносимую такой аппроксимацией погрешность, но может потребовать слишком больших ресурсов компьютера, что не позволительно для САПР. Поэтому в настоящей работе предлагается новый подход описания произвольной криволинейной геометрии на прямоугольной поверхности методом подсеточного разрешения геометрии (см. рисунок 1).

Рис.1 Пример создания сетки

4. Задание параметров численного моделирования.

В качестве профиля кольцевого крыла были выбраны: профиль с круглым сечением и профиль NACA- 2204 (профиль Вальхнера). Профиль Вальхнера со скругленной входящей кромкой является скоростным, обладает хорошими гидродинамическими характеристиками и высокой скоростью начала кавитации. Схема, используемого в данном исследовании, каверноформирующего границы каверны кольцевого крыла показана на рисунке 2.

j.	

Рис. 2 Схема кольцевого крыла

5. Результаты численного моделирования.

Рассмотрим в качестве примера результаты численного исследования поведение границ каверны под внешним воздействием кольцевого крыла. При проведении моделирования были приняты: диаметр кавернообразующего диска (кавитатора) d = 100 мм; внутренний диаметр крыла D = var; расстояние от кавитатора до фронтальной плоскости кольцевого крыла a = var; скорость набегающего потока V = 100 м/с.

На нижеприведенных в качестве примеров рисунках показаны результаты численного моделирования.

Рис.3. Схема границ каверны за кавитатором- диском (тестовый пример).

Получены замкнутые границы каверны на длине L = 500мм .

Рис.4. Схема границ каверны, формируемых кольцевым крылом с круглым сечением профиля (D = 160мм и а = 100мм).

Получены замкнутые границы каверны на длине L = 950мм при $\sigma = -0.05$.

Рис.5. Схема границ каверны при размещении кольцевого крыла с круглым сечением профиля впереди кавитатора (D = 200мм и а = -50мм)

Получены замкнутые границы каверны на длине L = 500мм при σ = -0,1. Внутренняя структура каверны неоднородна.

Рис.6. Схема границ каверны при размещении кольцевого крыла с круглым сечением профиля вблизи кавитатора (D = 130мм и а = 10мм).

Получены замкнутые границы неустойчивого кавитационного течения на длине L = 320мм, при $\sigma = -0.2$.

Рис.7. Схема границ каверны при использовании кольцевого крыла с профилем NACA- 2204 при D = 250мм и а=100мм.

Получена замкнутая каверна на длине L = 2200мм при σ = - 0,02. Границы такого кавитационного течения неустойчивы.

Приведём в качестве примера предварительные результаты исследования поведения границ каверны при вдуве воздуха в каверну, формируемую крылом с профилем NACA-2204. Избыточное давление воздуха во всех расчётах было принято 2,5¹⁰⁴ Па.

На рисунках 8 и 9 показаны качественные картины границ формируемых течений.

Рис.8. Схема границ кавитационного течения, формируемого кольцевым крылом с профилем NACA - 2204, углом атаки профиля – 7 градусов, D = 140мм, a = 10мм.

Получена замкнутая каверна на длине L > 5000мм, каверна однородная, устойчивая $\sigma = 0.9$.

Рис. 9. Схема свободных границ каверны с профилем NACA – 2204, углом атаки профиля – 7 градусов при D = 150мм и а = 50мм.

Здесь также получены каверны с замыкающимися границами с увеличением её длины в полтора раза. Из представленной картины также видно, что при увеличении диаметра крыла заметно увеличивается диаметр миделевого сечения каверны.

Выводы.

Из полученных предварительных результатов можно сделать следующие выводы.

- 1. Комплекс FV может успешно применяться для теоретического исследования сложных многопараметрических кавитационных течений, формируемых внешними гидродинамическими особенностями.
- 2. Поведение границ каверн, формируемых кольцевыми насадками (крыльями) с различными формами профиля в сечении полностью соответствуют концепции

формирования таких течений по методу Лайтхилла-Шушпанова, рассмотренному в работах [1,2].

 При проведении дальнейших работ целесообразно более детально исследовать влияние давления вдувемого в каверну газа, в том числе с учётом его температуры,. на поведение границ формируемого течения.

Библиографический список.

- 1. Махров В.П. Гидродинамика кавитационных течений формируемых внешними гидродинамическими особенностями (научное издание). М.: Изд-во МАИ, 2011.
- Махров В.П. Гидродинамика управляемых течений со свободными границамиЮ формируемыми с использованием внешней гидродинамической особенности – кольцевого крыла.// Вестник МАИ, Т.16, №5, 2009. с.264-273.

Сведения об авторах:

- 1. Махров Владислав Петрович, профессор кафедры «Проектирование аэрогидрокосмических систем» Московского авиационного института (национального исследовательского университета), д.т.н.; тел.: +7(499)158-46-76; <u>k608@mai.ru</u>
- 2. Глущенко Артем Александрович, аспирант Московского авиационного института (национального исследовательского университета); тел.: 8-916-443-97-18; e-mail: <u>Flamx@yandex.ru</u>
- 3. Юрьев Александр Иванович, начальник СКБ «Океан» при кафедре «Проектирование аэрогидрокосмических систем» Московского авиационного института (национального исследовательского университета); тел.: +7(499)158-46-76; e-mail: <u>k608@mai.ru</u>