УДК 621.396.67

Антенная решетка с печатными излучателями для БПЛА

М.А. Жексенов, В.А. Печурин, А.С. Волченков

Аннотация

Разработана компактная 8-элементная антенная решетка (АР) с круговой поляризацией электромагнитного поля, предназначенная для приема отраженного от земли сигнала, излучаемого системами ГЛОНАСС и GPS в диапазоне частот L1. На антенном полотне сформировано две линейки излучателей по четыре элемента в каждой. Центры излучателей располагаются в треугольной координатной сетке. Диаграммо-образующая схема (ДОС) АР состоит из восьмиканального синфазного делителя мощности Уилкинсона (СДМУ), восьми квадратурных делителей мощности (КДМ) и коаксиальных кабелей, соединяющих выходы СДМУ и КДМ. На входе ДОС установлен малошумящий усилитель и полосно-пропускающий фильтр. Измерения показали следующие значения основных параметров антенной решетки: коэффициент усиления по мощности (КУ) при круговой поляризации поля падающей волны 14,7 дБ, уровень боковых лепестков ДН не более минус 12 дБ.

Ключевые слова: антенная решетка; печатный излучатель; диаграммо-образующая

схема; делители-сумматоры мощности.

Введение

Целью данной работы является создание действующего макета антенной решетки (AP), предназначенной для приема сигналов, излучаемых системами ГЛОНАСС и GPS в диапазоне частот L1 и отраженных объектами, расположенными на поверхности земли, для последующего формирования их радиолокационного изображения путем цифрового синтеза апертуры в системах PCA [1—3]. Особенность проектируемой AP состоит в том, что она предназначена для установки на малом беспилотном летательном аппарате (БПЛА), а вследствие этого должна обладать малыми массой и габаритными размерами, а также конформностью ее конструкции с фюзеляжем БПЛА. Поэтому в качестве базового типа антенной системы выбрана планарная решетка, состоящая из печатных излучателей. Проектированию антенных решеток посвящено множество монографий [4— 10], а также оригинальных статей в периодической печати и докладов на конференциях. В данной работе эти материалы использованы при проектировании действующего макета AP.

1. Блок-схема антенной решетки и конструктивные параметры ее элементов

Схема построения антенной решетки представлена на рис.1. В ней имеется 8 печатных излучателей (ПИ) и диаграммо-образующая схема (ДОС), в состав которой, в свою очередь, входят 8 квадратурных делителей-сумматоров мощности (КДСМ) и один восьмиканальный синфазный делитель мощности Уилкинсона (СДМУ). На входе ДОС установлены полосно-пропускающий фильтр (ППФ) и малошумящий усилитель (МШУ). Внешний вид антенной решетки представлен на рис.2.

Излучатели имеют форму квадратов со стороной 68 мм, изготовлены на стеклотекстолитовых платах толщиной 2 мм, также имеющих квадратную форму с размерами сторон 100 мм, рис.3 а) Платы излучателей по своим краям закрепляются над рефлектором AP, имеющим форму параллелограмма, при помощи стоек цилиндрической формы с диаметром 8 мм и высотой 3 мм. Центры излучателей располагаются на раскрыве антенны в треугольной координатной сетке и стороны квадратов повернуты под углом 45° к краям отражающего полотна, загнутого на концах. Сформировано две линейки излучателей по четыре элемента в каждой. Расстояния между центрами излучателей вдоль азимутальной и угломестной осей составляют 110 мм и 90 мм, соответственно. Размеры сторон параллелограмма, форму которого имеет рефлектор, составляют 880 мм и 379 мм, а угол в основании 45°, толщина рефлектора, изготовленного из алюминиевого сплава, 1.5 мм.

Излучатели возбуждаются в двух ортогональных осях, пересекающих центры излучателей и параллельных сторонам квадратов. Положение точек возбуждения определено путем моделирования на ЭВМ с последующим экспериментальным уточнением.

Сигналы, возбуждающие излучатели в ортогональных плоскостях, приходят с трехдецибельных КДСМ, элементы 1 - 8 рис. 2 б). Апробированы две схемы КДСМ, на шлейфных квадратурных мостах (ШКМ) [11], рис. 4 а), и на связанных коаксиальных линиях передачи изготавливаемых фирмой SAGELABS (США) [12], рис.4 б). Сигналы на КДСМ поступают с выходов восьмиканального синфазного делителя мощности, построенного по бинарной схеме на основе двухканальных СДМУ, и изготовленного на фольгированном диэлектрике RT/Duroid 6010LM с относительной диэлектрической проницаемостью ε_r =10,2 и толщиной 1,27 мм, рис.3 б), это элемент 10 на рис. 26. Размеры платы делителя 100 × 100 мм. Развязывающие навесные резисторы имеют номинальные значения сопротивлений 100 Ом.

2

Выходы восьмиканального делителя мощности и входы квадратурных мостов соединяются с помощью коаксиальных кабелей.

Рис.1. Схема антенной решетки

б)

Рис.2. Фотография антенной решетки в двух видах, со стороны излучателей а), со стороны диаграммо-образующей схемы б)

На общем входе ДОС установлен трехрезонаторный полосно-пропускающий фильтр на связанных микрополосковых линиях в виде полуволновых противонаправленных шпилек. Фильтр изготовлен на одной подложке с 8-канальным делителем мощности. На входе ДОС установлен малошумящий усилитель мощности (МШУ) с коэффициентами усиления и шума, равными 16 дБ и 1,5 дБ, соответственно, элемент 11 на рис. 2 б). Питание МШУ осуществляется с помощью специального фильтра, элемент 9 на рис. 2 б). Излучатели АР и ДОС с фильтром и МШУ закрепляются на разных сторонах рефлектора. Выходы ДОС подключаются к излучателям с помощью индуктивных штырей цилиндрической формы диаметром 0,5 мм и длиной 7,8 мм. Масса АР 1,7 кг.

Рис.3. Печатный излучатель а), плата восьмиканального синфазного делителя мощности, построенного по бинарной схеме, и полосно-пропускающий фильтр

б)

Рис.4. Шлейфный квадратурный делитель мощности а), 3 дБ делитель мощности на связанных коаксиальных линиях передачи WIRELINE, изготавливаемых фирмой SAGELABS (США)

2. Моделирование элементов АР на ЭВМ Одиночный печатный излучатель

Моделирование характеристик печатного излучателя проводилось с помощью программного комплекса HFSS [13]. На рис. 5 а) изображены топологии находящихся по разные стороны от общего металлического основания ПИ и ШКМ, представленные в окне 3D-конструктора комплекса HFSS. Отметим, что вначале проведена отдельная отработка характеристик ПИ и ШКМ, а затем выполнено их совместное моделирование с помощью пакета HFSS, учитывающее как взаимное влияние этих элементов, так и влияние соединительных индуктивных стержней.

Рис.5. Печатный излучатель а), ШКМ б)

Расчетная характеристика диаграммы направленности (ДН) излучателя в дальней зоне на центральной частоте рабочего диапазона $f_c = 1.587$ ГГц для левой поляризации поля изображена на рис. 6 а). Максимальное значение коэффициента направленного действия КНД (в направлении, перпендикулярном плоскости ПИ) составляет $D_{\text{max}} \approx 7.7$ дБ. Ширина ДН по уровню половинной мощности оказывается, примерно, равной 65°, рис. 6 б. На рис. 7 а) представлена зависимость коэффициента эллиптичности от угла наблюдения. В плоскости $\varphi = 90^{\circ}$, или в плоскости YZ согласно рис. 8 а), в диапазоне углов θ = 0° ...156°, а в плоскости $\theta = 90^{\circ}$ (или в плоскости XY) - в диапазоне $\varphi = 31^{\circ}$...180° коэффициент эллиптичности k < 2. Таким образом, в широком диапазоне углов обеспечивается, сравнительно, малый уровень коэффициента эллиптичности. В полосе от 1.56 до 1.62 ГГц имеет место хорошее согласование по входу КДСМ, а именно $S_{11} < -25$ дБ, рис 7 б). Развязка каналов ШКМ $S_{12} < -10$ дБ.

Рис.6. Пространственная ДН ПИ а), зависимость КНД от угла φ при θ = 90° (кривая 1) и от угла θ при φ = 90° (кривая 2) в сферической системе координат б)

Рис.7. Зависимость модуля коэффициента эллиптичности от угла θ при $\varphi = 90^{\circ}$ (кривая 1) и от угла φ при $\theta = 90^{\circ}$ (кривая 2) в сферической системе координат а), зависимость параметров S_{11} (кривая 1) и S_{12} (кривая 2) от частоты б)

Расчет характеристик ПИ с помощью программного комплекса HFSS проведен в диапазоне частот 1.56-1.62 ГГц с шагом 5 МГц (всего 13 точек) при количестве адаптивных проходов, равном 7, и занял 9 минут 45 секунд машинного времени на ЭВМ с частотой процессора, равной 3 ГГц и ОЗУ с объемом 2 ГГб.

Антенная решетка

При решении впрямую задачи анализа параметров антенной решетки с помощью метода конечных элементов, примененного в пакете HFSS, пришлось бы использовать большой объем оперативной памяти ЭВМ и затратить много времени на проведение вычислений. Данная трудность обходится следующим путем, предусмотренным в комплексе HFSS. Вначале анализируются электродинамические характеристики фрагмента антенны, состоящего из двух печатных элементов, который на рис. 8 выделен пунктирной линией. Общая диаграмма направленности AP определяется путем умножения ДН фрагмента на множитель решетки, состоящей из 4-х одинаковых фрагментов [5]. Для выполнения этой операции в меню комплекса HFSS «radiation -> antenna array setup» необходимо задать 4 элемента решетки «number of cells = 4» вдоль орта [1,0,0], рис. 8.

Характеристики дальнего поля определялись на частоте f_c , указанной выше. Ширина ДН в плоскости $\theta = 90^\circ$, или в плоскости ХҮ согласно рис. 8, по половинной мощности составляет примерно 11°. В плоскости $\varphi = 90^\circ$ (YZ) – 46°, рис. 9 а). Таким образом, АР имеет диаграмму направленности веерного типа. Максимальное значение КНД для волны левой поляризации $D_{\text{max}} \approx 16.7$. В плоскости $\varphi = 90^\circ$ коэффициент эллиптичности k < 2 в диапазоне углов $\theta = 29^\circ ... 137^\circ$, а в плоскости $\theta = 90^\circ$ - в диапазоне $\varphi = 37^\circ ... 143^\circ$, рис. 9 б.

Рис. 8. Трехмерный вид АР

Расчет характеристик AP с помощью симулятора HFSS в диапазоне частот 1.56 – 1.62 ГГц с шагом 5 МГц (всего 13 точек) при числе адаптивных проходов, равном 7, занял 10 минут 38 секунд машинного времени.

Рис. 9. Зависимость КНД решетки от углов θ при $\varphi = 90^{\circ}$ (кривая 1) и φ при $\theta = 90^{\circ}$ (кривая 2) в сферической системе координат а), зависимость модуля коэффициента эллиптичности от углов θ при $\varphi = 90^{\circ}$ (кривая 1) и φ при $\theta = 90^{\circ}$, кривая 2, б)

Диаграммо-образующая схема

Опишем результаты моделирования отдельных элементов диаграммо-образующей схемы. Топология 8-канального делителя мощности, построенного по бинарной схеме на основе СДМУ, представлена на рис.10 а). Характеристики делителя моделировались с помощью программного комплекса Microwave Office (MWO) [14], они изображены на рис.10

б). Элементы топологии оптимизировались с целью минимизации коэффициента отражения со стороны общего входа делителя мощности с применением модуля EMSight электродинамического моделирования, входящего в комплекс MWO. Видим, что спроектированный СДМУ обладает хорошими параметрами, поскольку имеет место равномерное деление мощности между каналами, а в полосе рабочих частот коэффициенты отражения от входов и развязки между ними не превышают минус 20 дБ.

Рис.10. Топология 8-канального синфазного делителя мощности а), частотные зависимости элементов его матрицы рассеяния б)

Топология полосно-пропускающего фильтра и зависимости коэффициентов его матрицы рассеяния S_{11} и S_{21} , выраженные в децибелах, приведены на рис.11. Фильтр построен на связанных микрополосковых линиях на основе противонаправленных резонаторов шпилечного типа с трансформаторной связью на входах. Минимальный зазор между микрополосковыми линиями составляет 0,22 мм. Для настройки фильтра проведена оптимизация размеров его топологических элементов с помощью программных комплексов MWO и Zeland. Видим, что полученные в результате электродинамического моделирования размеры топологических элементов обеспечивают хорошие параметры фильтра в полосе рабочих частот.

При проектировании ДОС проведено моделирование и макетная отработка 3 дБ квадратурных делителей-сумматоров мощности двух типов, а именно, микрополоскового шлейфного моста, рис.4 а), и делителя на связанных коаксиальных линиях типа WIRELINE, выпускаемых фирмой SAGELABS, США, рис.4 б). В результате был остановлен выбор на второй из этих схем, поскольку она характеризуется меньшими габаритными размерами и обладает существенно большей шириной полосы рабочих частот (октава против 10,5%). Параметры макета делителя в рабочей полосе частот разработанной антенной решетки приведены на рис. 12. Измерения характеристик проводились с помощью векторного анализатора цепей E8358A. Видим, что устройство имеет хорошие параметры.

Рис.12. Измеренные характеристики КДСМ на связанных линиях типа WIRELINE

3. Результаты экспериментального исследования характеристик антенной решетки

На рис. 13 приведены результаты экспериментального измерения ДН антенной решетки на частоте f_c при линейной (горизонтальной относительно земли) поляризации падающего поля. Для сравнения полученных результатов с расчетными данными на этот же график нанесены кривые нормированной ДН, которые построены с помощью пакета HFSS. Даны угловые зависимости КНД в плоскостях ХҮ и ҮΖ. Видно, что характер изменения экспериментальных кривых соответствуют результатам моделирования, проведенного с использованием пакета HFSS. Ширина ДН по половинной мощности (-3 дБ) равна 11° в плоскости ХҮ и 46° в плоскости в плоскости ҮΖ.

Рис.13. Сравнение эксперимента (кривая 1) с результатами расчета, выполненного с помощью симулятора HFSS (кривая 2): в плоскости XY а), в плоскости YZ б)

Расчетное значение КНД антенны по круговой поляризации в направлении максимума ДН, полученное с помощью программного комплекса HFSS, составляет $D_{\text{max}} = 16.7 \text{ дБ}$, тогда как экспериментальные измерения дают величину коэффициента усиления (КУ) AP $G_{\text{max}} = 14,7 \text{ дБ}$. Таким образом, делаем заключение о том, что суммарные потери на рассеяние мощности и отражение в тракте и диаграммо-образующей схеме составляют 2 дБ.

4. Выводы

Спроектирована 8-элементная антенная решетка с круговой поляризацией электромагнитного поля, предназначенная для приема отраженного от земли сигнала систем ГЛОНАСС и GPS в диапазоне частот L1. Проведено моделирование параметров ее элементов на ЭВМ с помощью программных комплексов HFSS и Microwave Office. Изготовлены и измерены характеристики, как отдельных элементов решетки, так и антенной решетки в целом. Эксперимент показал хорошее совпадение его результатов с расчетными данными. Антенная решетка подготовлена к установке ее на БПЛА и проведению натурных испытаний в составе действующей аппаратуры.

Библиографический список

- 1. *Ксендзук А.В.* Синтез апертуры с использованием навигационной системы ГЛОНАСС // Успехи современной радиоэлектроники, 2003, №11, с.44 — 54.
- Кондратенков Г.С., Фролов А.Ю. Теоретические основы построения радиолокационных систем дистанционного зондирования Земли. М.: ВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина, 2009. 360 с.

- Радиолокационные станции с цифровым синтезированием апертуры антенны / Под ред. В.Т. Горяинова. М.: Радио и связь, 1988. 304 с.
- 4. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток: Учеб пособие для вузов / Под ред. Д.И. Воскресенского. М.: Радиотехника, 2003. 632 с.
- 5. *Марков Г.Т., Сазонов Д.М.* Антенны. Учебник для радиотехнических специальностей вузов. М.: Энергия, 1975. 528 с.
- Balanis C.A. Antenna theory: analysis and design, N.-Y.: John Wiley&Sons, 1997. 941 pp.
- 7. Кюн Р. Микроволновые антенны: Пер. с нем.. М.: Судостроение, 1967. 518 с.
- Сканирующие антенные системы СВЧ. В 3 Т. Пер. с англ. / Под ред. *Р.К. Хансена.* М.: Сов. Радио, 1968. Т.2. 468 с.
- Антенные решетки. Методы расчета и проектирования. Обзор зарубежных работ. Под ред. Л.С. Бененсона. М.: Сов. Радио, 1966. 368 с.
- Garg R., Bhartia P., Bahl I., Ittipiboon A. Microstrip Antenna Design Handbook. Boston•London: Artech House, 2001. — 845 pp.
- 11. Печурин В.А., Петров А.С. Делители-сумматоры мощности СВЧ диапазона// Успехи современной радиоэлектроники, 2010, №2, с. 5-42.
- Печурин В.А., Петров А.С. Квадратурные делители-сумматоры среднего и высокого уровня мощности для диапазона УКВ// Успехи современной радиоэлектроники, 2009, №10, с.59 — 62.
- Курушин А.А. Расчет антенн и СВЧ структур с помощью HFSS Ansoft. М.: ЗАО НПП «РОДНИК», 2009.- 256 с.
- 14. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ устройств с помощью Microwave Office. М.: СОЛОН Пресс. -496 с.

Сведения об авторах

 Жексенов Марат Андреевич, инженер 1 кат. ОАО НПК НИИ дальней радиосвязи. : 117292, г. Москва, ул. Кржижановского, д. 5, корп.1, кв. 4. тел,:8-906-782-90-00; e-mail: <u>nautilus_05@inbox.ru</u>

- 2. Печурин Владимир Андреевич, инженер 1 кат. ОАО НПК НИИ дальней радиосвязи,109559,г. Москва, Тихорецкий бульвар, д. 4, корп.1, кв. 283,тел.: 8-916-104-82-23, e-mail: <u>pe4urin.v@yandex.ru</u>
- Волченков Андрей Сергеевич, техник ОАО НПК НИИ дальней радиосвязи, . Москва, ул. Твардовского, д. 5, ,корп. 2, кв. 153,тел: 8-906-741-67-16. e-mail: <u>leftbox12@mail.ru</u>