Численная модель колебаний грузов, закрепленных на внешней подвеске летательного аппарата

А.А. Комаров

Аннотация

Представлена методика и результаты разработки численной модели динамического состояния грузов, закреплённых под крылом летательного аппарата. Рассматривается столкновение самолёта с взлётно-посадочной полосой в условиях аварийной посадки. Задача о нестационарном взаимодействии решена с использованием метода конечных элементов, на основе которого разработана модель конструкции планера с грузами на внешней подвеске. Получены зависимости от времени перемещений, скоростей и ускорений в различных точках грузов.

Ключевые слова: летательный аппарат, аварийная посадка, динамическое состояние, груз, внешняя подвеска, демпфирование, численная модель, разложение по собственным формам.

Разработка численной модели конструкции

Определение характеристик динамического состояния изделий авиационной техники, транспортируемых на внешних подвесках, необходимо при решении многих технических проблем. В частности, это требуется при оценке надежности и безопасности эксплуатации, как самих изделий, так и комплекса носитель - изделие.

Исследование динамического состояния конструкции носителя с изделием (грузом) на режимах посадки имеет практическое значение, так как уровни колебаний самолетов при взлете и посадке могут быть существенно выше, чем уровни колебаний в полете.

Ранее многими авторами проводились расчётные исследования динамики как целого ЛА, так и отдельных его агрегатов. Рассматривались всевозможные их схематизации: в виде балок [1], пластин (консоль крыла) [2] и т.д. Однако исследований динамического состояния грузов проводилось значительно меньше. В большинстве работ задача решалась в рамках "усеченной схемы": рассматривалось движение изделия на изолированной подвеске, к которой приложены внешние динамические воздействия в узлах присоединения к носителю. При решении задачи в такой постановке предполагалось, что имеется достоверная

информация о динамических нагрузках в узлах подвески для различных самолетов и подвесных систем. Кроме того, считалось, что динамические нагрузки при посадке возбуждают колебания конструкции преимущественно по первым тонам.

В настоящей статье представлены результаты формирования математической модели, предназначенной для исследования динамического состояния планера неманевренного самолёта и подвешенных под крылом грузов на режиме жёсткой посадки, т. е. при повышенной вертикальной скорости приземления. Модель описывает движение грузов (авиационных изделий) совместно с конструкцией планера с учетом сложных изгибнокрутильных колебаний, возникающих при динамическом взаимодействии всех его агрегатов. Рассматривается начальный участок движения после касания полосы. Считается, что на этом участке подъемная сила уравновешивается гравитационной силой.

В настоящее время наиболее рациональным путем решения задач о колебаниях сложных конструкций является использование метода конечных элементов (МКЭ), который реализован в виде компьютерных интерактивных систем. Для решения задачи о динамическом состоянии изделия, закрепленного под крылом носителя, использована система MSC.PATRAN/NASTRAN.

Для агрегатов и частей летательного аппарата (ЛА), имеющих достаточно большое удлинение, обычно используется балочная схематизация. Наиболее распространенной расчетной схемой стреловидного крыла большого удлинения является симметричная система балок, с переменными по размаху жесткостными и массовыми характеристиками, оси жесткости плоскостей расположены под углом стреловидности χ (рис. 1). Фюзеляж также схематизируется в виде системы балок, переменных по длине жесткостных и массовых характеристик.

На каждой консоли размещены два двигателя, две установки с авиационными изделиями на внешней подвеске и гондола шасси. Кроме того, в крыле находятся топливные баки, оборудование и механизмы управления. В фюзеляже расположено носовое шасси, а также топливные баки, системы и оборудование.

Для описания движения конструкции вводится глобальная прямоугольная система координат. Начало координат расположено в точке пересечения средней аэродинамической хорды крыла и продольной оси фюзеляжа, ось Х направлена по оси фюзеляжа от носа к хвосту, ось У вертикально вверх.

2

Рис. 1. Схема конструкции планера

Колебания конструкции вызываются действием посадочных ударов. Здесь в качестве нагрузки задан кратковременный процесс ускорения узлов крепления стоек шасси. Также заданы геометрия и распределение массы и жёсткости крыла, фюзеляжа, агрегатов и изделий, а также характеристики динамической нагрузки.

Конструкция планера, показанная на рис.1, состоит из фюзеляжа (14 отсеков) и двух консолей крыла (6 отсеков каждая). При моделировании фюзеляж разбивается на 14 участков, а консоли – на 13 каждая. Считается, что в пределах каждого участка характеристики жесткости линейно изменяются по длине. Далее определяются геометрические и массовые характеристики участков с учетом наличия в них оборудования и топлива и устанавливаются характерные сечения (границы отсеков и сечения, в которых закреплены агрегаты и грузы). В модели учитывается стреловидность крыла. Угол стреловидности *х* по средней аэродинамической хорде составляет *35°*.

Для моделирования силовой конструкции используются балочные элементы *Beam*. Он используется в трехмерных моделях для расчетов на растяжение-сжатие, изгиб, кручение и сдвиг. Этот элемент допускает наличие несимметричного поперечного сечения при несовпадении центра сдвига с центром тяжести, а также изменение параметров сечения по длине элемента. Конструкция моделируется конусообразными балочными элементами (с переменными характеристиками – площади, моменты инерции – по длине). Агрегаты, топливо и оборудование представляются как сосредоточенные в узлах массы и моделируются элементами *Mass* (сосредоточенная масса). Гондолы с двигателями и шасси и

3

элементы подвески моделируются с помощью комбинации балочных элементов и элементов *Mass*.

Исходными данными для моделирования являются таблицы центровки самолета, эпюры изгибной и крутильной жесткостей и эпюры площадей поперечных сечений для продольного набора крыла и фюзеляжа. Заданы также значения масс и координаты расположения массивных объектов.

Конечно-элементная модель (КЭМ) конструкции планера с грузами на подвеске, и нумерация узлов показаны на рис. 2.

Рис. 2. Нумерация узлов КЭМ планера

Первым этапом расчета являются определение собственных форм и частот колебаний конструкции.

Примеры форм колебаний конструкции, соответствующих 1-й и 13-й собственным частотам, показаны на рис. 3 и 4. Видно, что колебания планера носят сложный характер и сочетают изгибные и крутильные формы. Низшая частота, которой соответствует изгибная форма колебаний фюзеляжа, составляет 1,349 Гц.

Рис. 3. Первая собственная форма

№ Собственной формы: 13 Частота: 4,452 Гц)

Рис. 4. Тринадцатая собственная форма

Динамический расчет конструкции крыла выполняется с применением алгоритмов модального анализа для переходных процессов (*Transient response; Type* \rightarrow *Modal*). В этом типе анализа используется разложение вектора узловых перемещений в ряд по формам собственных колебаний и последующее решение системы. В этом случае задается количество учитываемых собственных форм, а также шаг интегрирования по времени. Для предварительного выбора шага интегрирования Δt_i используется соотношение:

$\Delta t_i \leq T_{min}/10$,

где T_{min} - период колебаний по наиболее высокой из учитываемых в разложении собственных форм. При учете 100 собственных форм ($T_{min}=0.0069 c.$) - $\Delta t_i = 0,0005 c.$

В реальной конструкции, всегда присутствует внутреннее демпфирование. Если оно достаточно мало и незначительно влияет на собственные частоты и формы колебаний, а также на взаимодействие различных форм колебаний, то его можно учесть приближённо в виде «эквивалентного» вязкого демпфирования. В модели демпфирование задаётся следующим образом: указываем величину коэффициента демпфирования для всей конструкции G = 0,001, частоты области интереса для преобразования структурного демпфирования всей конструкции (W_3) и конечного элемента (W_4) в эквивалентное вязкое демпфирование. Обычно W_3 и W_4 выбирают как доминантную частоту, на которой демпфирование наиболее активно. Часто, это первая собственная частота. В нашем случае $1,349 \Gamma \mu$

В качестве источника колебаний принимается кинематическое возмущение в виде полусинусоидального импульса ускорения длительностью 0.5 с.ек, амплитудой 100м/с² ек узлов КЭМ, соответствующих выпущенным стойкам шасси.

В результате вычислений получены зависимости составляющих ускорений для характерных узлов КЭ модели. Колебания конструкции носят сложный характер, что

обуславливает наличие перегрузок в её агрегатах как в направлении глобальной оси X так и по оси Y. Проверка сходимости полученных результатов осуществлялась путём вариирования числа учитываемых собственных форм и шага интегрирования. Ниже представлены данные сравнения ускорений *a*_y (в направлении глобальной оси Y) в узлах подвески грузов (узлы КЭМ 202 и 206).

Рис. 5 Ускорения дальней подвески

Рис.6. Ускорения ближней подвески

Зависимости от времени ускорений a_x (в направлении глобальной оси X) и a_y (в направлении глобальной оси Y) в сечениях, где расположены точки подвески грузов в сравнении с возмущающими ускорениями представлены на рис. 5 и 6 соответственно. Этим сечениям соответствуют узлы КЭМ 202 и 206.

Рис. 5 Распределение ускорений а_х

Рис.6. Распределение ускорений а_v

Зависимости от времени результирующих ускорений *а* в точках подвески грузов и узлах крепления шасси представлены на рис. 7.

Рис. 7. Распределение результирующих ускорений а

Видно, что максимальные уровни суммарных ускорений в узлах подвесок сопоставимы с уровнем кинематического возмущения. Наибольший вклад в динамическое состояние грузов вертикальные составляющие их ускорений.

Приведенные результаты расчетов показывают, что разработанная математическая модель позволяет описывать совместные пространственные колебания планера и закрепленных на внешних подвесках изделий при действии посадочных нагрузок.

Адекватность модели и работоспособность программ подтверждены физической корректностью результатов динамических расчетов и соответствием этих значений реальным величинам.

Библиографический список

1. Гудков А.И., Лешаков П.С. Внешние нагрузки и прочность летательных аппаратов. Изд. 2-е. – М.: Машиностроение, 1968.

2. Вибрации в технике Справочник в 6т. Т. 1. «Колебания линейных систем». Под ред. В.В. Болотина.- М.: Машиностроение 1978. Т. 3 «Колебания машин, конструкций и их элементов». Под ред. Ф.М. Диментберга и К.С. Колесникова.- М.: Машиностроение 1980.

Сведения об авторе

Комаров Антон Александрович, аспирант Московского авиационного института (государственного технического университета).

телефон: 926-320-66-88; e-mail: antkom@inbox.ru