О ПРИНЦИПИАЛЬНОЙ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНЫХ БАТАРЕЙ В КАЧЕСТВЕ ДАТЧИКОВ ЧАСТИЦ КОСМИЧЕСКОГО МУСОРА

М.П.Бургасов, А.Б.Надирадзе

В статье обсуждается вопрос о принципиальной возможности измерения параметров частиц космического мусора с использованием данных о падении мощности планарных солнечных батарей КА в моменты удара твердых частиц. Приводятся расчетные данные о реакции солнечных батарей на удары частиц различных скоростей, размеров и массовой плотности. На основании этих данных определяются параметры потоков частиц, которые могут быть измерены с помощью солнечных батарей. Формулируется задача восстановления функции распределения частиц космического мусора на орбите, занимаемой космическим аппаратом.

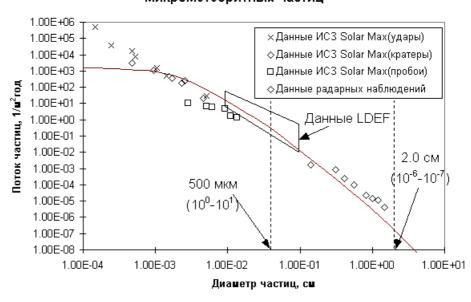
ВВЕДЕНИЕ

Хорошо известно, что современные средства измерения параметров космического мусора имеют весьма ограниченные возможности. В основном это связано с тем, что космический мусор является сильно разреженной и нестабильной субстанцией. По имеющимся в литературе данным потоки частиц, представляющих наибольшую опасность для КА ($d=0.05\div2$ см), находятся в диапазоне $10^{+1}\div10^{-7}$ м $^{-2}$ год $^{-1}$. Для надежных измерений таких малых потоков необходимы датчики с очень большой площадью чувствительной поверхности. Если принять, что количество частиц N, регистрируемых датчиком, распределено по закону Пуассона, то вариации N составят $\sim \sqrt{N_0\, tS}$, где N_0 - средняя плотность потока частиц, τ - время измерения, S - площадь чувствительной поверхности. При этом для измерения N_0 с погрешностью ε необходим датчик с площадью чувствительной поверхности:

$$S \ge \frac{1}{N_0 \tau \varepsilon^2} \tag{1}$$

При указанных выше значениях плотности потока частиц, времени измерения τ = 0.1 года и погрешности измерений ε = 10% получаем площадь поверхности S = $10^2 \div 10^{10}$ м 2 . Очевидно, что

создание такой системы является чрезвычайно сложной технической задачей и врядли возможно в ближайшем будущем.


Из существующих в настоящее время средств измерения наиболее полно удовлетворяют требованию (1) только возвращаемые образцы поверхностей КА. В таблице 1 приведены основные характеристики большинства возвращенных с орбиты и исследованных КА [1], а на рис. 1 представлены данные о распределении частиц космического мусора по размерам, полученные при анализе ударных кратеров на поверхности этих объектов [2].

Несмотря на высокую информативность возвращаемые образцы обладают одним существенным недостатком: их доставка является весьма редким событием.

Объект	Solar Max	LDEF	EURECA	HST
	(NASA)	(NASA)	(ESA)	(NASA/ESA)
Середина эпохи	14.03.82	24.02.87	12.01.93	28.02.92
Высота орбиты, км	570	463	508	614
Площадь, M^2	2.4	80.7	145	60.9
Экпозиция, (сутки)	1517	2106	326	1345

Таблица 1 - Основные характеристики возвращенных и исследованных КА

Рис. 1 – Данные о распределении частиц космического мусора по размерам, полученные при

Потоки частиц космического мусора и микрометеоритных частиц

анализе ударных кратеров на поверхности возвращаемых КА.

Столь редкое поступление данных вместе с относительно быстрым увеличением засоренности приводит к тому, что возникает отставание наших представлений о состоянии облака осколков от его реального состояния. Кроме того, поскольку полученные данные имеют интегральный характер, они не позволяют отслеживать динамику роста и флуктуации засоренности, что в конечном итоге может привести к ошибкам в прогнозах.

В связи с вышесказанным предлагается рассмотреть возможность использования планарных СБ КА в качестве датчиков частиц космического мусора. СБ имеют достаточно большую площадь поверхности ($S \approx 50 \text{ м}^2$) и устанавливаются практически на всех орбитальных КА. Высокоскоростной удар частиц может приводить к изменениям параметров СБ, фиксируя которые можно получить информацию о засоренности на орбите, занимаемой КА.

РЕАКЦИЯ СОЛНЕЧНОЙ БАТАРЕИ НА УДАР ЧАСТИЦЫ

Как известно, механические повреждения элементов СБ при ударах частиц приводят к небольшим изменениям параметров БС, зарегистрировать которые очень сложно. Однако, в работе [3] было установлено, что помимо механического разрушения при ударах частиц космического мусора может происходить шунтирование солнечных элементов,

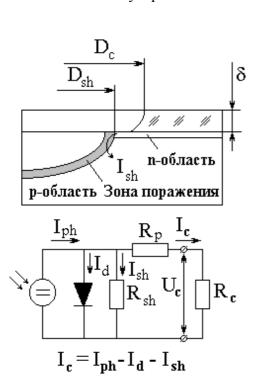


Рис. 2 — Схема поражения и эквивалентная схема солнечного элемента при ударе твердой частицы

сопровождающееся значительными потерями мощности батарей (до 0,1÷0,5% на один удар частицы). Шунтирование возникает в результате необратимых структурных изменений *p-n* перехода плавлении во время удара. Схема повреждений для приведена на этого случая рис. Эффект шунтирования наблюдается только при достаточно высоких скоростях соударения и размерах частиц. Критические параметры удара определяются условиями плавления полупроводника на глубине залегания р-п перехода. Значения критических параметров удара, вычисленные в [3], приведены на рис. 3.

При толщине защитного стекла солнечных элементов $\delta = 150$ мкм, скорости соударения 10-15 км/с и массовой плотности частиц 2.7 г/см³ находим, что критический диаметр частиц составляет $d_{min} \approx 0.03\text{-}0.04$

см. Значит, фиксируя скачки тока СБ, обусловленные ударами, можно измерить потоки частиц с $d > d_{min}$. Потоки таких частиц на орбитах 500-800 км в настоящее время достигают $1 \div 2 \text{ м}^{-2}\text{год}^{-1}$, что при площади СБ $S=50 \text{ м}^2$ позволяет получить результаты с точностью 30% в течении 1/4 года (см. (1)). Более детальные временные характеристики "датчика"-СБ приведены на рис. 4.

Величина потерь тока отдельного солнечного элемента зависит от параметров удара и солнечного элемента. Для вычисления этой величины в [3] было получено следующее соотношение:

$$\Delta I_c = \frac{U_c}{\rho_{sh}} \pi K_D a_{sh} \sqrt{\xi^2 - 1}$$
(2)

где U_c - напряжение на солнечном элементе, $\rho_{\rm sh}$ - пло удельное сопротивление области шунтирования (для

кремниевых СБ $\rho_{sh} = 0.075$ Ом·см [3]), $K_D = a_k/Dc$, $\xi = a_k/a_{sh}$, где a_k - радиус частицы.

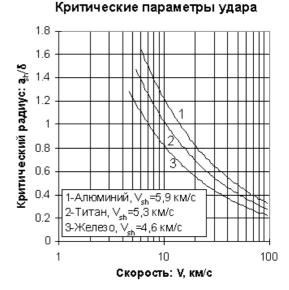


Рис.3 – Зависимость критического радиуса частиц от скорости соударения и массовой плотности частиц

Для СБ в целом потери тока ΔI не могут быть выражены в явном виде, поскольку они зависят от схемы соединения солнечных элементов, точки попадания частицы, контура затенения СБ, предыстории повреждений и от ряда других факторов.

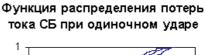



Рис. 4 – Характеристики «датчика» для измерения частиц различного размера

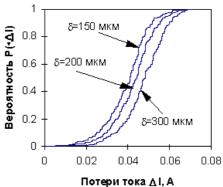


Рис. 5 – Функция распределения потерь мощности панелей СБ при одиночном ударе частицы

Кроме того, случайный характер воздействия требует рассматривать потери тока ΔI как случайную величину. Поэтому, для количественной оценки ΔI проводилось имитационное моделирование однократного поражения СБ. Результаты этих расчетов для солнечной батареи имеющей площадь $F=1.5~{\rm M}^2$, количество элементов $70{\times}57$, рабочее напряжение $U_{\rm p}=28{\rm B}$ при токе $I_{\rm p}=8.5{\rm A}$ приведены на рис. 5. Функция распределения частиц космического мусора по размерам задавалась соотношением:

$$\Phi(\xi) = 1 - \xi^{1-u} \tag{3}$$

при u = 3.49.

Из рис. 5. видно, что потери тока СБ при ударе частиц с закритическими параметрами превышают уровень 10 мА с вероятностью $P \ge 0.95$. По-видимому, такие скачки тока могут быть зафиксированы, что позволит использовать их для регистрации ударов отдельных частиц. Вероятно также, что будет возможным зарегистрировать не только факт удара, но и амплитуду падения тока СБ. Тогда информативность системы станет значительно выше.

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В самой общей постановке задача интерпретации состоит в восстановлении функции распределения частиц космического мусора $f(\mathbf{r}, \mathbf{v}, a, t)$ по данным наблюдений и модельным представлениям о движении частиц в окрестности Земли. В контексте данной работы такая постановка явно избыточна, поскольку она требует привлечения всей имеющейся информации о засоренности, а не только данных, полученных с помощью СБ. В связи с этим предлагается рассмотреть частную постановку, в которой требуется восстановить функцию распределения частиц не во всем околоземном пространстве, а только на одной фиксированной орбите по которой движется КА.

Будем считать, что нет сколько-нибудь существенной зависимости вида функции распределения частиц по скоростям и размерам от координаты точки орбиты, хотя вариации концентрации частиц вдоль орбиты существуют. Тогда функцию распределения частиц можно представить в виде:

$$f(a, \mathbf{v}, \theta) = N_0 \psi(\theta) \varphi(\mathbf{v}) a^{-u}$$
(4)

где N_0 -средний поток частиц с радиусом $a \ge 1$ см; $\psi(\theta)$ - распределение концентрации частиц вдоль орбиты; $\varphi(v)$ - распределение частиц по скоростям соударения встречи с КА; θ - угол между направлением на данную точку и перигей орбиты ($\theta = 2\pi t/T_0$ где T_0 - период обращения КА); u - параметр распределения частиц по размерам.

Если имеются данные о моментах времени соударения частиц с поверхностью СБ $\{t_0,...,t_n\}$, то задача интерпретации может быть представлена в виде:

$$S \int_{0}^{t} \int_{v} \int_{a} K(a, v, \tau) f(a, v, \theta) da dv d\tau = n(t), \text{ где}$$

$$n(t) = \sum_{i}^{n} \Delta(t - t_{i}),$$

$$\Delta(x) = \begin{cases} 0, x \le 0 \\ 1, x > 0 \end{cases}$$

$$(5)$$

где $K(a,v,\tau)$ - функция отклика СБ на воздействие потока частиц, учитывающая угол соударения частиц с поверхностью, ориентацию СБ, их частичное затенение и защищенность от воздействия частиц элементами конструкции КА и некоторые другие факторы.

Возможность решения (5) во многом зависит от вида функции отклика $K(a,v,\tau)$. Например, если $K(a,v,\tau)=$ *const* , то восстановить f(a,v) не представляется возможным, хотя остается возможность установить зависимость $\psi(\theta)$. В другом случае, когда функция отклика не зависит от номера витка, задача (5) принимает вид:

$$N_0 SC_1 \frac{t}{T_0} \approx n(t)$$
, где
$$C_1 = \int_0^{2\pi} \iint_{\mathbf{v}} K(a, \mathbf{v}, \theta) \psi(\theta) \varphi(\mathbf{v}) a^{-u} da d\mathbf{v} d\theta$$
 (6)

Этот случай представляет практический интерес, поскольку показывает, что даже при неизвестных $K(a,v,\tau)$ и компонентах $f(a,v,\theta)$ можно контролировать засоренность орбиты N_{θ} с точностью до константы C_{I} .

Более информативными являются измерения, в которых регистрируются не только моменты времени соударения, но и величины падения тока СБ ΔI . При этом, результаты обработки в меньшей степени зависят от функции отклика, поскольку данные о ΔI содержат дополнительную информацию о скоростях соударения и размерах частиц. Задачу интерпретации для этого случая можно сформулировать как поиск функции $f(a,v,\theta)$ на множестве возможных функций Φ , минимизирующей критерий согласия ω , который характеризует отклонение теоретической и эмпирической функций потерь тока :

где $\widetilde{G}(\Delta I,t)$ - эмпирическая функция потерь тока, построенная по выборке $\{\Delta I_i,\ t_i\}$; $G(\Delta I,t)=Mf$ - теоретическая функция потерь тока; M - модель поражения СБ, учитывающая, как и функция отклика, угол соударения частиц с поверхностью, ориентацию СБ, их частичное затенение и защищенность от воздействия частиц элементами конструкции КА и некоторые другие факторы.

Решение (7), как и решение (5), зависит от вида функции отклика $K(a,v,\tau)$. Однако теперь, даже при $K(a,v,\tau) = const$, имеется возможность восстановить не только угловую зависимость $\psi(\theta)$, но и распределение по скоростям и размерам частиц, т.е. фактически найти $f(a,v,\theta)$ на орбите KA.

ЗАКЛЮЧЕНИЕ

В статье показано, что существует принципиальная возможность использования планарных СБ для измерения параметров частиц космического мусора. В соответствии с проведенными расчетами, СБ скачкообразно и необратимо теряют от 0.1 до 0.5% электрической мощности при ударах частиц, имеющих скорости выше 6-7 км/с и размеры $d_k > 0.03$ -0.04 см. Потоки таких частиц на низких и средних орбитах достигают уровня $1 \div 2 \ 1/\text{м}^2$ год, что, при площади батарей S=50 м², позволяет проводить измерения плотности потока частиц с точностью не хуже 30% в течении 1/4 года.

Для практической реализации рассмотренного метода измерений предстоит найти способ регистрации скачков тока при ударах частиц и создать методики обработки результатов измерений. Однако затраты на проведение этих работ будут, по-видимому, значительно меньше затрат на создание специализированных устройств, что позволяет нам надеяться на успех.

СПИСОК ЛИТЕРАТУРЫ

- Hajime Yano. Hypervelocity Imacts on Solar Cell of European Retrievabla Carrier and Hubble Space Telescope.// ISU'93:Space Physical Sciences, Japan. - 5 August, 1994
- 2. R.Jehn. The Present Space Debris Environment.// ISU'95: Royal Institute of Technology, Stockholm.-19 July, 1995.
- 3. M.P.Burgasov, A.B.Nadiradze. Assessment of the Solar Cell Degradation Caused by the Space Debris Impact.// Proc. of ESPC-93, Austria.- 23-27 August 1993.- p.767.
- 4. M.P.Burgasov, A.B.Nadiradze, The Solar Batteries as the Space Debris Detector.// Prpc. of ESPC-95, Franc.- 4-8 September 1995.- p.663.

СВЕДЕНИЯ ОБ АВТОРАХ

Бургасов Михаил Петрович, профессор Московского государственного авиационного института (технического университета), д.т.н.

Надирадзе Андрей Борисович, ведущий научный сотрудник Московского государственного авиационного института (технического университета), к.т.н.