УДК 681.586.325

Малогабаритная комплексная навигационная система на микромеханических датчиках

Мишин А.Ю.*, Кирюшин Е.Ю., Обухов А.И**., Гурлов Д.В.**

Арзамасское научно производственное объединение (Темп-Авиа), ул. Кирова, 26; Арзамас, 607220, Россия *e-mail: andrew_mishin@mail.ru **e-mail: mysterio7@rambler.ru ***e-mail: sinner2382@mail.ru

Аннотация

Представлена малогабаритная комплексная навигационная система, выполненная на базе микромеханических датчиков первичной информации и приемника GPS, разработанная ОАО АНПП «ТЕМП-АВИА», описаны способы повышения точностных характеристик системы за счет компенсации инструментальных погрешностей, приведены результаты испытаний в составе комплекса наземной обработки на автономном транспортном средстве.

Ключевые слова: навигационная система, датчик угловой скорости, акселерометр, комплексирование информации

Введение

В последние несколько лет стали доступны инерциальные устройства нового типа с компактными чувствительными элементами - датчики угловых скоростей и акселерометры на основе микроэлектромеханической технологии (MEMS) с низкой стоимостью и малыми габаритами.

Микромеханические датчики, серийно производимые иностранными компаниями, имеют сравнительно низкую точность. Поэтому при применении в составе инерциальных систем необходимо осуществлять коррекцию информации. Успехи, достигнутые в области спутниковой навигации, широкое распространение систем GPS, ГЛОНАСС, Galileo, привели к появлению значительной номенклатуры приемников спутниковой навигации, имеющих малые габариты и низкую стоимость. При этом, такие приемники обеспечивают достаточную точность определения координат и скорости.

В случае кратковременного отсутствия сигналов приемника спутниковой навигации, может быть использована другая корректирующая информация, например, о магнитном поле Земли, получаемая от микромеханических трехкомпонентных магнитометров, а в вертикальном канале – от датчика давления.

Тем не менее, основным режимом работы комплексной навигационной системы является режим интеграции инерциальной и спутниковой системы. Необходимость интеграции двух столь непохожих систем навигации обусловлена принципиально различным характером ошибок, присущих каждой из них. Справедливо ожидать, что две системы при совместном их применении будут дополнять и корректировать одна другую, повышая надежность и точность работы навигационного комплекса.

Совместное применение инерциальной навигационной системы (ИНС) и GPS позволяет решать ряд задач прикладной навигации, в которых требуется непрерывная выдача информации. Причем, под перерывом здесь следует понимать как вызванный пропаданием спутников (в условиях городской застройки, под мостами и т.д.), так и интервал между двумя измерениями GPS. Другой проблемой использования GPS в реальном времени являются скачкообразные изменения показаний, вызванные изменением состава созвездия спутников. В зависимости от количества и положения спутников эти скачки могут достигать десятков метров. Использование ИНС позволяет

эффективно фильтровать эти скачки и сглаживать навигационные данные, а использование методов траекторией обработки позволит построить высокоточную сглаженную траекторию транспортного средства.

Целью работы является исследование характеристик малогабаритной комплексной навигационной системы (БИНС-ММГ), построенной на базе микромеханических датчиков, и оценка возможности повышения точностных характеристик системы за счет компенсации инструментальных погрешностей.

Задачи:

- исследование характеристик микромеханических датчиков первичной информации (ДПИ) и системы в целом;

 оценка возможности повышения точности навигационной системы в автономном режиме работы (при отсутствии корректирующей информации), за счет компенсации ошибок в процессе калибровки системы;

- проведение лабораторных испытаний системы на температурных воздействиях, а так же испытаний на комплексе наземной отработки (в составе движущегося транспортного средства) с имитацией отказа GPS-приемника.

1 Формирование облика БИНС-ММГ

1.1 Требования к функциональности и технические характеристики

Бесплатформенная инерциальная навигационная система (БИНС) в составе изделия БИНС-ММГ является корректируемой инерциальной навигационной системой, имеющей собственный вычислительный модуль TMS320.

Используя алгоритм интегрирования данных GPS с измерениями инерциальных, магнитометрических датчиков и датчика давления, комплексная навигационная система выдает в цифровой форме полный набор параметров линейного и углового движения:

- координаты местоположения и высота;
- углы ориентации: курс, крен, тангаж;
- скорость в земной системе координат (СК);
- вертикальная скорость;
- ускорения, угловые скорости.

Технические характеристики БИНС-ММГ приведены в таблице 1.

Таблица 1

Выходные данные	Частота выдачи	100 Гц	
	Протокол передачи	RS-422	
	Время готовности	45сек	
	Формат данных	бинарный	
	Диапазон рабочих	40 +70°C	
Orphysioling apage	температур	-+0+70 C	
Окружающая среда	Температура хранения	-50+85°C	
	Влажность	5%95%	
Физические воздействия	Удар	40g (5 мс)	
	Синусоидальная вибрация	2g (202000 Γų)	
Электрические параметры	Напряжение питания	936 <i>B</i>	
	Потребляемая мощность	1,2 <i>Bm</i>	
Массогабаритные параметры	Размеры	60х50х22 <i>мм</i>	
	Объем	$0,065 \ \partial M^3$	
	Bec	< 0,095 кг	
Надежность	Ресурс	5000 ч	
Рабочие диапазоны	Крен	±180°	
	Тангаж	±90°	
	Курс	±180°	
	Ускорение	$\pm 2 \div \pm 16g$	
	Угловая скорость	±300°/c	

Технические характеристики БИНС-ММГ

1.2 Требования к аппаратному составу и особенности функционирования

Рассматриваемая комплексная навигационная система включает в свой состав БИНС на основе трех микромеханических гироскопов $(MM\Gamma)$ ADIS16100 микромеханического акселерометра (MMA) И трехосного ADXL345, информационную потребителей И поддержку аппаратуры GPS), спутниковых навигационных систем (далее ПО тексту модуль микромеханических магнетометров и датчика давления.

Инерциальные датчики (ММА, ММГ). Измеряют линейное ускорение, угловую скорость трем ортогональным осям чувствительности. ПО Особенности: высокий уровень смещения нулевого сигнала, шума, нестабильность нулевого сигнала, погрешности масштабного коэффициента, неортогональности осей, влияние ускорения по прямым и перекрестным осям, влияние температуры, вибрации. Применение: используются для формирования инерциального решения – координат, проекций скорости, углов ориентации (курс, тангаж, крен).

GPS-приемник с антенным блоком. Измеряет координаты (широта, долгота, высота), проекции вектора скорости, путевой угол. Возможно отсутствие данных вследствие потери сигнала. Применение: используется для коррекции инерциального решения, оценки инструментальных погрешностей инерциальных датчиков.

Трехкомпонентный магнетометр. Измеряет проекции вектора напряженности магнитного поля Земли на оси чувствительности. Особенности: высокий уровень смещения нулевого сигнала, шума, неортогональности осей, магнитные девиации. Применение: используется для расчета начального угла курса, коррекции текущего угла инерциального курса.

Датчик давления. Измеряет абсолютное давление. Особенности: зависит от текущего состояния атмосферы. Применение: используется для коррекции высоты и скорости ее изменения при отсутствии данных GPS.

1.3 Требования к точности

Разработка БИНС-ММГ проводится в рамках составной части научнотехнической работы СЧ НИР «Статуэтка – 1 – ТЕМП-АВИА», выполняемой в рамках Федеральной целевой программы №1 по развитию обороннопромышленного комплекса Российской Федерации.

В процессе разработки БИНС-ММГ требования к точности были

сформированы с учетом возможной специфики применения системы в качестве резервного поставщика навигационной информации (табл. 2).

Таблица 2

	ИНС/GPS	Автономное				
	Интегрированный	инерциальное				
	режим	решение				
Параметры линейного движения						
Координаты (комплексированное	6 11	300 м (3 мин. после				
решение)	0 м	пропадания GPS)				
	0.2 11/2	5 м/с (3 мин. после				
Путевая скорость	0,2 ///C	пропадания GPS)				
Вертикальная скорость	0,25 м/с	0,5 м/с				
Углы ориентации (крен, тангаж)						
Прямолинейный полет*	0,1°0,2°	0,2°0,4°				
Маневрирование**	0,2°0,4°	$0,4^{\circ}0,7^{\circ}$				
Курс						
	Путевой угол	Магнитный курс***				
Произвольный полет	0,4°	1°				

Модифицированные требования к макетам БИНС низкой точности

1.4 Состав и структура аппаратуры БИНС-ММГ

Аппаратура БИНС-ММГ состоит из вычислительного блока (в негерметичном корпусе) и антенны GPS. Внешний вид аппаратуры БИНС-ММГ с описанием назначения разъемов представлен на рисунках 1, 2.

Рисунок 2

Антенна GPS

В состав блока БИНС-ММГ входят следующие компоненты:

- сигнальный процессор TMS320F28335;
- микромеханические акселерометры ADXL345;
- микромеханические гироскопы ADIS16100;
- приемник GPS LR9102;
- датчик давления STD60-030 0 10;
- трехкомпонентный магнетометр НМС 1053;
- датчик температуры.

2 Испытания

2.1 Лабораторные испытания

Для оценки возможности применения БИНС-ММГ в качестве БИНС низкой точности проведены исследования характеристик трехосного блока акселерометров (ADXL345) и ДУС (ADIS16100).

Для предварительной оценки влияния температуры на характеристики датчиков осуществлён прогрев системы в течение 15 *мин* со съёмом данных, осредненных на интервале времени 10 *сек*.

Результаты приведены на рисунках 3, 4. Осредненные показания акселерометров по трем каналам (Ax, Ay, Az) приведены в импульсах, при этом

g соответствует 2048 импульсов. Цена импульса ДУС (Fix, Fiy, Fiz) соответствует 1/8192 *рад/с*. На графиках по оси абсцисс – время, сек. Таким образом, 1 импульс показаний акселерометров соответствует 4.9·10⁻⁴ *g*, 1 импульс показаний ДУС соответствует 25.2 *град/ч*.

Рисунок 3 - Графики зависимости показаний ДУС от времени прогрева (при трех идентичных запусках, длительность ~ 15 минут (осреднение на интервале 10 секунд), показания ДУС приведены в импульсах, 1 импульс - 25.2 град/ч)

Рисунок 4 - Графики зависимости показаний блока акселерометров (БА) от времени прогрева (при трех идентичных запусках, длительность 15 минут (осреднение на интервале 10 секунд), показания акселерометров приведены в импульсах, 1 импульс - 4.9·10⁻⁴ g)

Из рисунков видно, что изменение нулевых сигналов горизонтальных каналов акселерометров соответствует изменению угла порядка 0.15 *град* за время самопрогрева. Изменение показаний вертикального акселерометра вызвано, по-видимому, изменением масштабного коэффициента в процессе самопрогрева, что соответствует технической документации на датчик ADXL345. Изменение дрейфа ДУС ADIS16100 в процессе самопрогрева может достигать 2000-3000 *град/ч*.

На второй стадии для оценки изменения характеристик от включения к включению проводился съём данных БИНС-ММГ с осреднением показаний за 30 *сек* с выключением питания в 10 повторениях. Результаты приведены на рисунках 5, 6.

Рисунок 5 - Графики изменения показаний ДУС от запуска к запуску (интервал осреднения показаний - 30 секунд, по оси абсцисс – номер запуска).

Рисунок 6 - Графики изменения показаний БА от запуска к запуску (интервал осреднения показаний - 30 секунд, по оси абсцисс – номер запуска).

Полученные результаты показывают, что изменение нулевого сигнала (СКО) горизонтальных каналов акселерометров от запуска к запуску составляет ~0.0002 *g*, в вертикальном канале ~0.001-0.002 *g* (или 0.05-0.1% по масштабному коэффициенту).

Изменение дрейфа ДУС от запуска к запуску (СКО) составляет 50-100 град/ч.

Выводы по результатам испытаний. Анализ результатов проведенных испытаний акселерометров ADXL345 и ДУС ADIS16100 в составе БИНС-ММГ позволяет сделать следующие выводы:

1. Датчики угловой скорости (ДУС):

- изменение дрейфа в процессе самопрогрева составляет 2000-3000 град/ч;

- изменение дрейфа от запуска к запуску составляет 150-300 *град/ч*;

- изменение дрейфа в запуске составляет 150 *град/ч*.

2. Акселерометры:

- изменение нулевого сигнала в процессе самопрогрева горизонтальных каналов составляет ~0.001-0.006 *g*, в вертикальном канале ~0.03-0.04 *g*;

- изменение нулевого сигнала от запуска к запуску горизонтальных каналов составляет не более $\pm 0.0006 \ g$, в вертикальном канале не более $\pm 0.006 \ g$;

- изменение нулевого сигнала в запуске составляет $\pm 0.001 \ g$.

3. Повышение точности БИНС-ММГ на базе ДПИ фирмы Analog Devices в диапазоне изменения температур возможно при проведении температурной компенсации дрейфа ДУС и нулевого сигнала акселерометров.

2.2 Испытания на комплексе наземной отработки

В процессе проведения испытаний навигационной системы на комплексе наземной отработки (КНО) проведен ряд проездов, каждый из которых включал режим начальной выставки на неподвижном основании, и режим движения между контрольными точками трассы.

Задание начального угла ориентации в азимуте осуществлялось с помощью магнитного компаса, в процессе движения азимутальная ориентация корректировалась по показаниям приемника GPS (путевой угол).

Для оценки автономной точности БИНС-ММГ на соответствие требованиям ТЗ по погрешностям счисления координат имитировались отказы приемника GPS путем расстыковки разъема антенного блока на время 90 *сек*.

Погрешность счисления координат оценивалась по данным эталонной БИНС, также комплексированной с приемником GPS.

На рисунке 7 приведены графики навигационных параметров, измеряемых БИНС-ММГ для одного из проездов: углы ориентации, измерения акселерометров и ДУС.

Данные графики характеризуют параметры движения автомобиля. Для оценки автономной точности БИНС-ММГ каждый проезд разбивался на участки, на которых осуществлялась имитация отказа GPS.

На последующем рисунке 8 приведены проекции линейной скорости движения, ошибки по координатам, а также оценки дрейфа ДУС, в качестве примера – для проезда №4.

Участки отказа GPS характеризуются накоплением ошибок по координатам и проекциям скорости.

Рисунок 7 – Параметры траекторного движения БИНС-ММГ

Рисунок 8 – Параметры 4-го проезда

Ошибки БИНС-ММГ по координатам за 90 секундные участки автономной работы по 4 проездам приведены в таблице 3. В данной таблице также приведены оценки эквивалентных ошибок, оцененные по характеру накопления погрешностей БИНС-ММГ по координатам.

	№ участка		Ошибка по	Оценки факторов ошибок БИНС		
№ проезда		Канал	координате, <i>м</i>	Vo, <i>м/с</i>	Ao, <i>g</i>	₩о, град/ч
Проезд 1	1	Х	602	0.185	-0.00744	153
		у	105	-0.181	0.00431	-9.06
		Z	155	-0.227	0.0151	-74.1
	2	Х	20	0.46	-0.00245	12.7
		у	20	0.112	-0.000262	4.45
		Z	-115	0.585	-0.00255	-12
Проезд 2	1	Х	250	-0.427	0.011	-25.2
		у	-21	-0.499	0.00152	-6.68
		Z	203	-0.725	-0.00205	60.8
	2	Х	17	0.675	-0.00525	27.7
		у	13	0.106	-0.00015	1.5
		z	-157	0.68	-0.00478	-5.8
	3	Х	56	-0.379	-0.00277	34.5
		у	34	0.281	-0.0004	4.43
		z	253	-0.64	0.0104	-18.4
Проезд 3	1	Х	62	1.42	-0.0234	149
		у	109	-0.074	0.00224	4.59
		z	72	0.0845	0.00581	-29.3
	2	Х	-445	0.311	-0.0148	18.6

Таблица 3. Обобщенные результаты проездов

		у	-11	0.093	-0.000678	1.15
		Z	133	0.323	0.00509	-17.7
		Х	-713	-1.05	0.00728	-156
	3	У	112	0.429	-0.00104	19.7
		Z	-404	0.494	-0.0209	66.7
Проезд 4	1	Х	307	0.515	-0.0055	82.8
		у	14	-0.056	-0.000258	4.97
		Z	-32	0.92	-0.0113	57.5
	2	Х	-144	0.0615	-0.0103	46.3
		У	-37	0.158	-0.00197	4.19
		Z	841	-0.0765	0.00341	124
	3	Х	-195	-0.85	-0.00186	-7
		У	-54	0.261	-0.0012	-5.42
		Z	608	0.461	-0.000125	101
		у	25	-0.0118	0.000616	0.345
		Z	256	0.381	0.0177	-84.8

В таблице 3 параметр Vo - ошибка эквивалентная систематической погрешности БИНС-ММГ по скорости, Ао – ошибка эквивалентная погрешности БИНС-ММГ по ускорению, Wo характеризует эквивалентный дрейф ДУС.

Примечание – Выделенные ячейки таблицы показывают превышение допуска на БИНС низкой точности

Анализ результатов проездов показывает, что в большинстве случаев ошибки БИНС-ММГ не превышают требования ТЗ к БИНС низкой точности. В ряде проездов, где зафиксировано превышение допуска (500 *м* за 90 *сек*) определены факторы, вызвавшие рост погрешностей счисления координат:

- в проезде 1 – эквивалентный дрейф 153 *град/ч* при оцененных значениях дрейфа на уровне 300 – 600 *град/ч*;

- в проезде 3 – эквивалентный дрейф минус 156 *град/ч* при оцененных значениях дрейфа на уровне 600 – 800 *град/ч*;

- в проезде 4 – эквивалентный дрейф 100 - 125 *град/ч* при оцененных значениях дрейфа на уровне 200 *град/ч*;

Графики оценки дрейфа ММГ показывают на высокую нестабильность дрейфа в процессе движения, что может быть вызвано влиянием ускорений автомобиля.

Максимальное значение ошибки, пропорциональной эквивалентному нулевому сигналу акселерометра, составляет порядка 0.02 g. При этом, автономная ошибка БИНС-ММГ в вертикальном канале, которая в основном определяется нестабильностью нулевого сигнала вертикального акселерометра не превышает 120 м. Малый рост ошибок БИНС-ММГ в вертикальном канале обусловлен наличием оценки нулевого сигнала вертикального акселерометра в процессе совместной работы с БИНС с приемником GPS, кроме того вертикальный канал может быть поддержан информацией, поступающей от датчика давления.

Таким образом, по результатам испытаний можно сделать следующие выводы:

1. Требуемые значения погрешностей для систем низкой точности могут быть обеспечены БИНС-ММГ в принятом аппаратном облике и наборе ДПИ.

2. Дальнейшее уменьшение ошибок БИНС-ММГ в горизонтальных каналах может быть достигнуто применением следующих мероприятий:

- уточнение математических моделей дрейфов ДУС в части зависимости от температурных воздействий и линейных ускорений, с целью включения данных параметров в состав вектора состояния системы комплексной обработки информации;

- введение в состав вектора состояния системы параметров смещения нулевых сигналов горизонтальных акселерометров.

Заключение

В процессе выполнения работы проведены исследования характеристик малогабаритной комплексной навигационной системы, построенной на базе микромеханических датчиков, и осуществлена оценка возможности повышения

точностных характеристик системы за счет компенсации инструментальных погрешностей.

Основные задачи, решенные в данной статье:

- исследование характеристик микромеханических ДПИ и системы в целом;

- оценка возможности повышение точности микромеханической инерциальной системы в автономном режиме работы (при отсутствии корректирующей информации), за счет компенсации ошибок в процессе калибровки системы;

- проведены испытания БИНС-ММГ, включающие: лабораторные испытания, в том числе на температурных воздействиях; испытания на комплексе наземной отработки в составе движущегося транспортного средства.

Библиографический список

1. Основы построения бесплатформенных инерциальных навигационных систем / В.В.Матвеев, В.Я.Распопов / *Под общ. ред. В.Я.Распопова.* – СПб.: ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», 2009. - 280с.

2. *Распопов В.Я*. Микромеханические приборы. – М.: Машиностроение, 2007 – 400 с.

3. *Бранец В.Н., Шмыглевский И.П.* Введение в теорию бесплатформенных инерциальных навигационных систем. – М.: Наука, 1992. – 280с.

4. *Степанов О.А.* Особенности построения и перспективы развития навигационных инерциально-спутниковых систем. /Интегрированные инерциально-спутниковые системы навигации. Сб. статей докл. СПб. 2001.

5. Гироскопические системы. Гироскопические приборы и системы: Учеб. Для вузов /Д.С.Пельпор, И.А.Михалёв, В.А.Бауман и др./ Под ред. Д.С.Пельпора. 2-е изд., перераб. И доп. – М.:Высш. Шк., 1988.-424 с.

6. *Яценков В.С.* Основы спутниковой навигации. Система GPS NAVSTAR и ГЛОНАСС. – М.: Горячая линия – Телеком, 2005. – 272 с.

7. *Андреев В.Д.* Теория инерциальной навигации. Кн.І. Автономные системы. Кн.ІІ. Корректируемые системы. – М.: Наука, 1966, 1967.

8. *Ишлинский А.Ю*. Ориентация, гироскопы и инерциальная навигация. – М.: Наука, 1976. – 672 с.