УДК 621.822.83; 53.08

# Экспериментальная верификация энергетической модели роликового подшипника для моделирования опорных узлов авиационных двигателей.

# Часть 1. Нагружение подшипника радиальной силой и поперечным моментом на специальном стенде, предотвращающем изгиб колец

Сорокин Ф.Д.<sup>1\*</sup>, Чжан Х.<sup>1\*\*</sup>, Попов В.В.<sup>1\*\*\*</sup>, Иванников В.В.<sup>2\*\*\*\*</sup>

<sup>1</sup>Московский государственный технический университет им. Н.Э. Баумана, ул. 2-ая Бауманская, 5, Москва, 105005, Россия <sup>2</sup>Научно-технический центр по роторной динамике ООО «Альфа-Транзит», ул. Ленинградская, 1, Химки, Московская область, 141400, Россия \*e-mail: <u>sorokin\_fd@mail.ru</u> \*\*e-mail: <u>zhang274234111@yandex.ru</u> \*\*\*e-mail: <u>vvpopov.bmstu@gmail.com</u> \*\*\*\*e-mail: <u>vvivannikov@gmail.com</u>

#### Аннотация

С целью верификации энергетической модели роликового подшипника выполнялся натурный эксперимент на универсальной испытательной машине Zwick/Roell Z100. Роликовый подшипник типа 12309КМ, закрепленный в специальном устройстве, обеспечивающем фиксацию наружного кольца, через жесткую штангу нагружался радиальной силой и моментом. Деформации деталей, используемых закреплении нагружении подшипника, предварительно В И оценивались расчетом С помошью МКЭ. Экспериментальные данные обрабатывались методом наименьших квадратов с целью их аппроксимации

аналитическими соотношениями. Сравнение экспериментальных данных с численными результатами, полученными по ранее разработанной энергетической модели, показало их хорошее соответствие. Из выполненного исследования можно сделать вывод об очень хорошей точности энергетической модели роликового подшипника.

**Ключевые слова**: энергетическая модель роликового подшипника, испытательное оборудование, метод наименьших квадратов.

### Введение

Подшипниковые узлы являются важнейшими структурными элементами машин и приборов. При решении задач роторной динамики вращающихся машин большое значение имеет определение их упругих характеристик.

Анализу различных аспектов механического поведения и взаимодействия элементов роликового (и не только) подшипника посвящено множество работ, например, [1-15]. Сравнительно простой и в то же время весьма информативной является модель, предложенная De Mul в работе [9], в которой каждый ролик разбивается на тонкие диски и далее нелинейные уравнения равновесия ролика записываются с использованием законов статики. В статье [10] идеи De Mul получили дальнейшее развитие, при этом оказалось, что вместо законов статики гораздо проще и удобнее использовать энергетический подход. Силы, действующие на ролик со стороны колец и бортиков, а также элементы матрицы жесткости ролика сравнительно просто вычисляются через первые и вторые производные энергии деформаций. Запись уравнений равновесия элементов подшипника, выполненная в [9], при этом становится излишней, так как все соотношения могут быть получены формальным дифференцированием энергии деформации.

Целью данной статьи является прямая экспериментальная верификация энергетической модели роликового подшипника (ЭМРП), разработанной в [10]. Верификация выполнялась сопоставлением нагрузочных характеристик, полученных в эксперименте и рассчитанных на основе ЭМРП. Испытание выполнялось на универсальной испытательной машины (ИМ) Zwick/Roell Z100. Объект исследования – роликовый подшипник типа 12309 КМ.

#### Энергетическая модель роликового подшипника [10]

Роликовый подшипник в энергетической модели состоит из наружного и внутреннего колец, роликов. Каждое из колец считается твёрдым телом с 6-ю степенями свободы. Ролики приняты упругими телами. Движение роликов считается плоским (3 степени свободы). Т.е., ролик может совершать 2 малых перемещения и 1 малый поворот в своей рабочей плоскости. Точнее, другие движения ролика (например, вращение вокруг собственной оси) не меняют упругую энергию ролика и поэтому из рассмотрения исключены. Поворот вокруг радиуса не допускается сепаратором. Относительные смещения колец и роликов малы из-за малости упругих деформаций, тем не менее наличие зазоров и контактные явления делают задачу нелинейной.

Силы, действующие на ролик со стороны колец и бортиков (флангов), а также

элементы матрицы жесткости ролика вычисляются дифференцированием (численным, либо аналитическим) энергии ролика по его перемещениям.

Энергия деформаций подшипника является суммой энергий деформаций всех роликов. Деформации колец в местах контакта с роликами учитываются коэффициентами. Дифференцирование суммарной энергии всех роликов по перемещениям колец позволяет найти обобщенные силы и обобщенные жесткости для всего подшипника.



Рис. 1. Схема роликового подшипника.

# Технические характеристики исследуемого подшипника и испытательной машины

Объектом исследования являлся радиальный роликовый подшипник 12309КМ с короткими цилиндрическими роликами, однорядный, с однобортовым наружным кольцом и двухбортовым внутренним кольцом. Материал подшипника – сталь марки ШХ15.

На рис. 2 представлен общий вид подшипника 12309КМ. Геометрические

параметры подшипника, заимствованные из справочника [16-18], показаны на рис. 3.

Соответствие технические характеристики представлены в табл. 1.





Рис. 2. Подшипник 12309КМ. Рис. 3. Геометрические параметры 12309КМ.

Таблица 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . –  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Внутренний диаметр, <i>d</i> (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45   |
| Напулиний циаметр Д (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100  |
| Паружный диамстр, D (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100  |
| Ширина, В (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Масса, <i>m</i> (кг)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,89 |
| Грузоподъемность динамическая, С (кН)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72,1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Грузоподъемность статическая, С <sub>0</sub> (кН)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41,5 |
| $\mathbf{P}_{\mathbf{D},\mathbf{H},\mathbf{V},\mathbf{C}}$ the description of th | 2.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,5  |
| Диаметр борта наружного кольца, D <sub>1</sub> (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81,4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Диаметр борта внутреннего кольца, <i>d</i> <sub>1</sub> (мм)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Количество роликов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |

Технические характеристики подшипника 12309КМ.

Статические испытания проводились на универсальной испытательной машине Zwick/Roell Z100, предназначенной для испытаний образцов и элементов

конструкций на растяжение и сжатие. С помощью ИМ перемещение и нагрузка на торце траверсы через электромеханический преобразователь записывались в базу данных и далее представлялись в виде графиков. Общий вид ИМ показан на рис. 4. Характеристики ИМ приведены в таблице 2.



Рис. 4. Универсальная испытательная машина Zwick/Roell Z100.

Таблица 2.

| Наименование параметра                | Zwick/Roell Z100    |
|---------------------------------------|---------------------|
| Тип силовозбуждающего устройства      | электромеханический |
| Максимальная нагрузка, кН             | 100                 |
| Точность измерения нагрузки, Н        | 0,02                |
| Максимальное перемещение траверсы, мм | 1040                |
| Точность измерения перемещений, мм    | 0,001               |

# Характеристики испытательной машины

| Скорость перемещения активного захвата, мм/мин | 11000                       |  |
|------------------------------------------------|-----------------------------|--|
| Примечание: Машина снабжена вычислительны      | м комплексом, позволяющим   |  |
| разрабатывать индивидуальную программу испыта  | аний. Возможно малоцикловое |  |
| нагружение образцов.                           |                             |  |

# Проектирование оснастки и исследование влияния её деформации на

## результаты эксперимента

С целью исключения деформаций наружного кольца была разработана специальное устройство фиксации подшипника (УФП). УФП состоит из трех частей: базовой платы, квадратной платы с отверстием для установления подшипника и ребер жесткости. Части устройства соединены винтами. Материал УФП – алюминий. Общий вид УФП с подшипником показан на рис. 5.



Рис. 5. Устройство фиксации с подшипником.

Размеры деталей УФП подбирались из условия малости влияния их деформаций на результаты эксперимента. Для оценки влияния вклада деформаций УФП в итоговые перемещения точки приложения нагрузки, в комплексе ANSYS [19] была создана конечно элементная модель УФП (рис. 6). Модель состоит из тех же деталей, что и реальное УФП, но подшипник заменен его имитацией в виде жесткого кольца (сплошной цилиндр с отверстием). В численных расчетах на модели УФП реализованы те же виды нагрузок, что и в натурных экспериментах.

При численном моделировании УФП использовались 10-ти узловые конечные элементы – SOLID187 в форме тетраэдров. На контактных поверхностях наносились контактные сетки, составленные из элементов TARGE170 и CONTA174. Нижняя поверхность базовой плиты была полностью закреплена по всем направлениям. К кольцу прикладывались вертикальная сила  $F_y$ =-2000 H и момент, направленный вокруг горизонтальной оси  $M_x$ =119500 H·мм, (максимальные величины нагрузок в эксперименте). Упругие постоянные для материала модели УФП задавались по справочным данным: модуль упругости алюминия E=7,17·10<sup>4</sup> МПа; коэффициент Пуассона v=0,33. Перемещения оснастки показаны в графическом виде на рис. 7.



Рис. 6. Конечно-элементная модель УФП с сеткой



Рис. 7. Полные перемещения УФП (мм).

На основании численного моделирования (рис. 7) можно заключить, что максимальное перемещение на поверхности контакта кольца и УФП равно 0,0116 мм. Найденные перемещения позволяют оценить поворот жесткого кольца. Так как, согласно рис. 7, в нижней части отверстия перемещения практически отсутствуют, то максимальный поворот кольца в УФП не превосходит  $\theta_{xy\phi\Pi} = 0,0116/D \approx 0,0001$ , где D – диаметр наружного кольца подшипника. Тот же поворот, найденный с помощью ЭМРП, равен  $\theta_{xnod} = 0,0108$ . Т.е., угол поворота, вызванный деформациями УФП, составляет менее 1% от угла поворота внутреннего кольца подшипника. Таким образом, можно сделать вывод, что использование УФП практически не влияет на результаты эксперимента.

## Статические испытания подшипника

Статические испытания проходили в несколько этапов:

- 1. Подготовка оснастки.
- 2. Подготовка программы испытаний на ЭВМ.
- 3. Испытания подшипника 12309КМ при комбинированной нагрузке.

 Испытания ИМ при сжатии с целью выделения деформаций самой машины.

На рис. 8 показана система подшипник-УФП-штанга и нагружающее устройство ИМ. Штанга представляет из себя стальной цилиндр с наружным диаметром, совпадающим с внутренним диаметром внутреннего кольца подшипника. Нагрузка через нагружающее устройство ИМ прикладывалась к краю штанги. Величина нагрузки плавно изменялась от нуля до 2 кН. Нагружение производилось кинематически, т.е. движением траверсы со скоростью 1 мм/мин. Вследствие наличия плеча на внутреннее кольцо подшипника действовала комбинированная нагрузка, то есть вертикальная сила и поперечный момент.



Рис. 8. Система подшипник-УФП-штанга и нагружающее устройство

С помощью ИМ перемещение и нагрузка на торце траверсы через электромеханический преобразователь записывались в базу данных и далее представлялись в виде графиков. Величина поперечного момента определялась через значение вертикальной силы *F* и её плечо. Для расчета плеча и величины момента использовались формулы

$$M = FL, \ L = L_{y} - \frac{B+S}{2}, \tag{1}$$

где L – плечо силы;  $L_u$  – длина цилиндра; B – размер зоны контакта между цилиндром и подшипником, то есть ширина подшипника; S – размер зоны контакта между цилиндром и траверсой. По результатам измерений были приняты значения:  $L_u = 85$  мм, B = 25 мм и S = 25,5 мм.

В результате испытаний были получены нагрузочная характеристика системы подшипник-УФП и нагрузочная характеристика ИМ при комплексной нагрузке (рис. 9). Ролики располагались симметрично относительно оси нагружения – по 6 роликов с каждой стороны (расположение роликов влияет на результат эксперимента).



Рис. 9. Нагрузочные характеристики:

1 – ИМ; 2 – система подшипник-УФП

Из рис. 9 видно, что ИМ не является абсолютно жесткой и при обработке результатов эксперимента необходимо учитывать нагрузочную характеристику ИМ.

# Обработка результатов эксперимента

Экспериментальные графики были предварительно обработаны: плохие

участки кривых (в начале) отбрасывались, так как там выбираются зазоры, выдавливается смазка и т.п.; хорошие участки кривых были интерполированы гладкой зависимостью по методу наименьших квадратов [20]:

$$w = A + CF^n,$$

где *w* – перемещение траверсы, мкм; *F* – нагрузка, H; *A* – начальный зазор, мкм; *C* и *n* – коэффициенты.

При выполнении экспериментов было заметно, что начальный зазор для каждого испытания является разным. С целью преодоления влияния различных зазоров на результаты производился сдвиг графиков по горизонтали, чтобы выполнялось равенство *А*=0. Далее методом наименьших квадратов (МНК) определялись неизвестные коэффициенты *С* и *п*. Графики полученных аналитических зависимостей вместе с экспериментальными точками показаны на рис. 10.



Рис. 10. Результаты экспериментов и их аппроксимация МНК:

*«*\**»* – экспериментальные данные; *«*–*»* – аппроксимация МНК.

Для получения нагрузочной характеристики подшипника две полученные степенные зависимости вычитались одна из другой (для системы подшипник-УФП и

ИМ)

$$w = 4,8999F^{0,6642} - 0,4163F^{0,7315},$$
(2)

где перемещение должно задаваться в мкм, а нагрузка в Н.

### Сопоставление результатов эксперимента с расчетами по ЭМРП

В рамках ЭМРП была создана численная модель того же подшипника типа 12309КМ и реализованы те же виды нагрузок, что и в описанных выше экспериментах.

Ролик был разбит на N=20 дисков одинаковой толщины (при увеличении N результаты практически не меняются). Упругие постоянные для колец и роликов были приняты одинаковыми (сталь): модуль упругости для всех деталей  $E=2,06\cdot10^5$  МПа, а коэффициент Пуассона v=0,3. Для учета контакта между телами качения и дорожками качения боковые контактные жесткости  $C_e$ ,  $C_i$  находились с использованием формулы Palmgren [10]. Для контакта между делами качения и флангами колец торцевые контактные жесткости  $C_f$  определялись из задачи Герца о контакте двух сферических упругих тел [10], в которой контактные поверхности бортиков с целью упрощения расчета принимались плоскими (так как торцевые контакты играют вспомогательную роль).

В разработанной на основе ЭМРП численной модели к внутренней обойме подшипника прикладывалась вертикальная сила *F* и поперечный момент *M*, определенный по формуле (1). Так же как в экспериментальном исследовании вертикальная нагрузка *F* увеличивалась с 0 до 2000 Н.

В результате применения ЭМРП получены вертикальные перемещения *и* и поперечные углы поворота у внутреннего кольца подшипника. Для сопоставления с экспериментальными данными по найденным *и* и у определялись перемещения торца штанги *w*:

$$w = u + \gamma L.$$

Полученные результаты расчета представлены в табл. 3, а соответствующие им графики совместно с экспериментальными данными на рис. 11.

Таблица 3

| <i>F</i> , H | <i>М</i> , Н•мм | и, мкм | ү , мрад |
|--------------|-----------------|--------|----------|
| 200          | 11950           | 1,39   | 2,84     |
| 400          | 23900           | 1,67   | 3,86     |
| 600          | 35850           | 1,96   | 4,79     |
| 800          | 47800           | 2,20   | 5,69     |
| 1000         | 59750           | 2,46   | 6,56     |
| 1200         | 71700           | 2,72   | 7,41     |
| 1400         | 83650           | 2,98   | 8,25     |
| 1600         | 95600           | 3,22   | 9,09     |
| 1800         | 107550          | 3,45   | 9,93     |
| 2000         | 119500          | 3,70   | 10,77    |

Перемещения торца штанги, найденные из ЭМРП



Рис. 11. Сопоставление результатов расчета и эксперимента:

*«*\**»* – ЭМРП; *«*–*»* – экспериментальная зависимость (2)

Как видно из графиков, разработанная в [10] ЭМРП дает результаты, которые весьма хорошо подтверждаются натурным экспериментом.

### Заключение

1) Энергетическая модель роторного подшипника, разработанная в [10] была верифицирована натурными экспериментами.

2) Экспериментальное исследование выполнялось на универсальной испытательной машины Zwick/Roell Z100 при сочетании радиальной силы и поперечного момента. Объектом являлся роликовый подшипник типа 12309КМ. С целью исключения влияния изгиба колец была разработана специальное устройство фиксации подшипника, деформации которого предварительно оценивались МКЭ.

3) Сопоставление результатов расчета и эксперимента показало, что энергетическая модель роликового подшипника, предложенная в [10], дает результаты, которые весьма хорошо подтверждаются натурными экспериментами.

### Библиографический список

1. Houpert L. An enhanced study of the load-displacement relationships for rolling element bearings // Journal of Tribology, 2014, vol. 136, no. 1, pp. 011105 - 011116.

 Houpert L. A uniform analytical approach for ball and roller bearings calculations // Journal of Tribology, 1997, vol. 119, no. 4, pp. 851 - 858.

3. Guo Y., Parker R.D. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model // Mechanism & Machine Theory, 2012, vol. 51, no. 5, pp. 32 - 45.

4. Cavallaro G., Ne'lias D., Bon F. Analysis of high-speed inter-shaft cylindrical roller bearing with flexible rings // Tribology Transactions, 2005, vol. 48, no. 2, pp. 154 - 164.

5. Antoine J.F., Visa C., Sauvey C. Approximate analytical model for Hertzian elliptical contact problems // Journal of Tribology, 2016, vol. 128, no. 3, pp. 660 - 664.

 Leblanc A., Nelias D., Defaye C. Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings // Journal of Sound & Vibration, 2009, vol. 325, no. 1, pp. 145 -160.

7. Houpert L. An engineering approach to Hertzian contact elasticity part I // Journal of Tribology, 2001, vol. 123, no. 3, pp. 582 - 588.

8. Houpert L. An engineering approach to Hertzian contact elasticity part II // Journal of Tribology, 2001, vol. 123, no. 3, pp. 589 - 594.

9. De Mul J.M., Vree J.M., Maas D.A. Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—Part II: Application to roller bearings and experimental verification // Journal of Tribology, 1989, vol. 111, no. 1, pp. 142 - 148.

 Сорокин Ф.Д., Чжан Х., Иваников В.В. Разработка энергетической модели роликового подшипника // Известия высших учебных заведений. Машиностроение.
 2018. no. 3. C. 14 - 23.

Зубко А.И., Донцов С.Н. Исследование условий работоспособности и разработка диагностики керамических подшипников нового поколения // Труды МАИ. 2014. № 74. URL: <u>http://trudymai.ru/published.php?ID=49034</u>

12. Хаустов А.И., Шашкин И.Н., Мальгичев В.А., Невзоров А.М. Конструктивные особенности проектирования подшипниковых узлов для осевых насосов систем терморегуляции летательных аппаратов // Труды МАИ. 2012. № 50. URL: http://trudymai.ru/published.php?ID=27592

13. Ермилов Ю.И., Равикович Ю.А., Клименко А.В., Холобцев Д.П. Разработка математической модели подшипника скольжения жидкостного трения, учитывающей теплообмен с окружающей средой // Труды МАИ. 2010. № 39. URL: http://trudymai.ru/published.php?ID=14806

14. Дегтярев С.А., Кутаков М.Н., Леонтьев М.К., Попов В.В., Ромашин Ю.С. Учет контактных взаимодействий при моделировании жесткостных свойств роликовых подшипников // Вестник московского авиационного института. 2015. Т. 22. № 2. С. 137 - 141.

15. Tong V.C., Hong S.W. Characteristics of tapered roller bearing subjected to combined radial and moment loads // IJPEMGT, 2014, vol. 1, no. 4, pp. 323 - 328.

16. Бейзельман Р.Д., Цыпкин Б.В., Перель Л.Я. Подшипники качения.

Справочник. - М.: Машиностроение, 1975. - 572 с.

17. Черменский О.Н., Федотов Н.Н. Подшипники качения: Справочник-каталог. -М.: Машиностроение, 2003. - 576 с.

 Перель Л.Я. Подшипники качения: Расчет, проектирование и обслуживание опор: Справочник. - М.: Машиностроение, 1983. - 543 с.

19. Чигарев А.В., Кравчук А.С., Смалюк А.Ф. ANSYS для инженеров. - М.: Машиностроение-1, 2004. - 512 с.

20. Бараз В.Р. Корреляционно-регрессионный анализ связи показателей коммерческой деятельности с использованием программы Excel. - Екатеринбург: ГОУ ВПО «УГТУ–УПИ», 2005. - 102 с.