УДК 621.372.8

Процессы старения и изменения структуры протонообменных волноводов в кристаллах ниобата лития

А.В. Жундриков, В.И. Кичигин, И.В. Петухов, Д.И. Шевцов

Аннотация

Методом модовой спектроскопии изучены изменения показателя преломления протонообменных волноводных слоев на ниобате лития (X-срез) во времени, которые отражают медленно протекающие процессы «старения» (стабилизации) волноводов. Изучены изменения структуры канальных протонообменных волноводов, подвергнутых длительной стабилизации, методом химического травления протонированных слоев в сочетании с 3D-профилометрией высокого разрешения.

Ключевые слова: оптический волновод; ниобат лития; протонный обмен; старение протонообменных волноводов

Введение

В волоконно-оптических гироскопах (ВОГ) навигационного класса точности применяются интегрально-оптические схемы (ИОС), содержащие поляризующие протонообменные канальные волноводы, сформированные в кристаллах ниобата лития LiNbO₃. Сравнительно простой способ создания таких волноводных слоев – протонный обмен (ПО) [1], представляющий собой ионообменную реакцию между кристаллом ниобата лития и расплавом кислоты (бензойной, янтарной, стеариновой и др.). В ходе реакции ионы лития в поверхностном слое кристалла частично замещаются на протоны кислоты. Показатель преломления получаемого после ПО слоя отличается от показателя преломления в объеме кристалла, что приводит к возможности распространения светового сигнала в слое в результате полного внутреннего отражения.

Несмотря компаний ИОС на TO, что рядом освоено производство с протонообменными волноводами, проблема их длительного использования в рабочем температурном диапазоне, который требуется для навигационных систем различного назначения, не является окончательно решенной. Это обусловлено тем, что протонообменные канальные волноводы могут иметь вариации оптических характеристик

1

(что влечет за собой нестабильное и нерегулярное поведение сигнала ВОГ) в течение длительного времени после температурного воздействия, что предположительно связано с подвижностью протонов в решетке кристалла.

В данной работе проведено экспериментальное изучение изменений показателя преломления ПО-слоев на ниобате лития на протяжении длительного времени (до 3 лет) при различных температурах «старения» волноводов. Эти результаты сопоставлены с результатами изучения структуры канальных ПО-волноводов, подвергнутых длительной стабилизации, методом химического травления протонированных слоев в сочетании с 3D-профилометрией.

Методика эксперимента

Были использованы монокристаллические образцы ниобата лития (X-срез) конгруэнтного состава. Протонный обмен (ПО) с формированием планарных волноводов проводили в расплаве бензойной кислоты (БК), а также в расплавах БК с добавками бензоатов магния (БМ) и натрия (БН), при 175°С в течение 4 ч. Для всех полученных ПО-образцов ниобата лития, хранившихся при комнатной температуре (21 ± 1 °C), в течение двух-трех лет периодически определяли профили изменения показателя преломления (ПП) необыкновенного луча $n_e(x)$ по глубине волновода. Для определения изменения показателя преломления $n_e(x)$ использовали метод модовой спектроскопии. С помощью метода призменного ввода измеряли эффективные ПП волноводных мод на длине волны $\lambda = 0.633$ μ т. Профиль необыкновенного показателя преломления $n_e(x)$ по глубине образителя преломления лостазателя волноводного слоя восстанавливали с помощью обратного ВКВ-метода [2].

Также были изготовлены образцы с канальными ПО-волноводами; режим ПО такой же, как для планарных волноводов. Часть этих образцов была выдержана 1 год при комнатной температуре, «старение» некоторых образцов продолжалось 3 года. Строение протонообменных слоев на этих образцах было изучено методом химического травления в сочетании с бесконтактной профилометрией (NewView 5000, Zygo). Химическое травление проводили в смеси концентрированных азотной и фтористоводородной кислот марки ос.ч. в соотношении 2 : 1, температура – 21°С. Подробности методики химического травления описаны в работе [3].

Результаты

Профили показателя преломления (ПП) для всех образцов имеют ступенчатый вид (рис.1); изменение показателя преломления $\Delta n_e(0)$ у поверхности планарного волновода

составляет 0,110 – 0,117. При старении волноводов характер профиля $n_e(x)$ не изменяется (рис.1), но величина $\Delta n_e(0)$ несколько снижается во времени, причем величина $\Delta n_e(0)$ у большинства образцов колеблется в пределах 0.001–0.003. Наиболее заметное изменение ПП происходит в период до 6 месяцев, а через 20–30 месяцев ПП для большинства образцов стабилизируется (табл.1).

Рис. 1. Профили показателя преломления волноводного слоя, полученного в бензойной кислоте с добавкой 2 мол.% бензоата натрия (ПО, 175°С, 4 ч), сразу после ПО (сплошная линия) и спустя год после него (пунктирная линия)

Таблица 1

Среда ПО	Значения $n_e(0)$ при времени t (мес.) после ПО					
	0	6	9	12	18	24
БК	0,1165	0,1162		0,1163	0,1162	
БК + 1% БН	0,1151	0,1134		0,1136	0,1139	
БК + 2% БН	0,1146		0,1133	0,1127	0,1128	0,1130
БК + 3% БН	0,1132	0,1126		0,1123	0,1127	
БК + 8% БН	0,1164	0,1140 ⁷		0,1144	0,1138	
БК + 16% БН	0,1126	0,1127		0,1122	0,1118	0,1117
БК + 2% БМ	0,1127		0,1109	0,1098	0,1096	0,1096
БК + 8% БМ	0,1142	0,1123		0,1123	0,1122	
БК + 16% БМ	0,1171	0,1147		0,1145	0,1147 ¹⁹	

Зависимость $n_e(0)$ от времени старения после протонного обмена в чистой БК и в БК с добавками БН или БМ при 175°С в течение 4 ч

Примечания:

1. Концентрация добавок БН и БМ указана в мол.%.

2. Надстрочный индекс показывает количество месяцев после ПО в случаях, когда оно отличалось от обозначенного в заголовке столбца.

Изменение ПП происходит, как и многие процессы релаксации, по экспоненциальному закону (рис.2):

$$\Delta \Delta n = \Delta \Delta n_0 \exp(-t / \tau_n)$$

где τ_n – время релаксации, определяемое по изменению показателя преломления, $\Delta\Delta n = \Delta n - \Delta n_s$, $\Delta\Delta n_0 = \Delta n_0 - \Delta n_s$, Δn – текущее значение изменения показателя преломления, вызванного протонированием; Δn_0 – значение Δn при t = 0; Δn_s – стационарное значение Δn при $t \rightarrow \infty$. Величину Δn_s определяли экстраполяцией $\Delta n, 1/t$ -кривой до 1/t = 0.

Рис.2. Зависимость ∆∆*n* от времени стабилизации в полулогарифмических координатах для образца ниобата лития, протонированного в бензойной кислоте с добавкой 2 мол.% бензоата магния при 175°С в течение 4 ч

В некоторых случаях удалось определить время релаксации (табл.2).

Причиной оптической нестабильности можно считать заметную подвижность межузельных протонов в кристаллической решетке ниобата лития. Известно, что при протонном обмене в ниобате лития образуется несколько фаз H:LiNbO₃ [4, 5], причем в фазах с более высоким содержанием водорода протоны занимают как определенные положения в кислородных плоскостях кристаллической решетки, так и межузельные позиции [4 - 6].

Возможно, что после протонного обмена межузельные протоны медленно диффундируют в равновесные положения, стремясь к упорядочению протонной подсистемы.

Таблица 2

Значения времени релаксации т_n, определяемого по изменению показателя преломления необыкновенного луча

Источник	τ _n , мес.		
протонов			
БК	< 6		
БК + 2% БМ	12,1		
БК + 2% БН	15,4		

Замедление процесса стабилизации оптических характеристик волноводов, полученных в БК + БМ и БК + БН, может быть связано с проникновением ионов натрия и магния в поверхностный слой ниобата лития в процессе ПО [7]. Присутствие ионов магния или натрия в кристаллической решетке ниобата лития, в том числе в межузельном пространстве, затрудняет диффузию протонов, имеющую место в процессе стабилизации волноводных слоев.

Значительно меньшее время требуется для стабилизации волноводов при повышенной температуре (табл.3), что связано с увеличением диффузионной подвижности протонов.

Таблица 3

Изменение показателя преломления при 60°С после ПО в БК при 175°С в течение 4 ч

<i>t</i> , ч	$\Delta n_e(0)$
0	0,1160
24	0,1147
52	0,1150
100	0,1146
150	0,1141
200	0,1143

Ранее было показано [3, 8], что наглядным и эффективным методом изучения структуры волноводных слоев является метод химического травления. Данный метод

позволяет по скорости травления идентифицировать протонообменные фазы, а по точкам излома на кривых «глубина вытравленного слоя – время травления» определять толщину слоев каждой из фаз, образующих волновод. Данный метод был использован для изучения структуры состаренных ПО-волноводов.

Следует отметить, что над неотожженным канальным волноводом в исходном состоянии (до травления) имеется возвышение 7 – 9 нм над плоскостью поверхности непротонированного ниобата лития (рис.3), что обусловлено деформацией решетки при внедрении в нее протонов.

При воздействии смеси кислот HNO₃ + HF протонированные слои растворяются, а непротонированный ниобат лития практически не растворяется [3], что позволяет определить действительную скорость травления ПО-канала, используя непротонированную поверхность в качестве уровня, относительно которого отсчитывается глубина *h* вытравленной области. Пример профиля ПО-канала после химического травления показан на рис.4.

Рис.3. Рельеф поверхности в области неотожженного канального ПО-волновода

Рис.4. Профиль ПО-канала (старение 3 года), полученного при ПО в БК

(175°С, 4 ч), после химического травления в течение 50 мин

По результатам химического травления ПО-каналов в течение различного времени была построена кривая травления (рис.5), которая состоит из двух прямолинейных участков, после которых глубина вытравленной области выходит на предел (полное вытравливание ПО-слоев). Постоянная скорость травления на каждом из прямолинейных участков соответствует постоянству состава фаз $H_xLi_{1-x}NbO_3$, т.е. можно сделать вывод, что ПО-канал содержит слои двух фаз с различным содержанием *x* протонов. В сочетании с рентгеноструктурными исследованиями эти фазы были идентифицированы [3] как β_1 - и β_2 - фазы системы H:LiNbO₃ [4].

Рис.5. Кривая травления протонообменного канального волновода, полученного в БК (175°С, 4 ч) и «состаренного» в течение 3 лет

Кривая травления состаренного канального волновода имеет качественно такой же вид, как кривая травления несостаренного волновода, однако изменяется положение точки излома: для несостаренного волновода она находится при глубине травления 570-580 нм [3], а для волновода, состаренного в течение 3 лет, – при 690-700 нм. Таким образом, при длительной стабилизации неотожженного ПО-волновода происходит некоторое увеличение толщины верхнего слоя с более высокой концентрацией протонов (β₂-фаза) и уменьшение толщины нижнего слоя с меньшей концентрацией протонов (β₁-фаза). Можно предположить, что в процессе стабилизации волноводов происходит диффузия межузельных протонов, имеющихся в слое β_2 -фазы [5], в слой β_1 -фазы, что сопровождается увеличением концентрации протонов в слое β_1 -фазы и превращением ее в β_2 -фазу вблизи исходной границы между β_1 - и β_2 -фазами. Этим и обусловлено увеличение толщины слоя β_2 -фазы. Поскольку различие между концентрационными интервалами существования β_1 - и β_2 -фаз невелико [5] и прирост слоя β_2 -фазы при стабилизации ПОволновода мал (~ 100 – 120 нм), указанное перераспределение протонов не приводит к качественному изменению фазового состава волноводного слоя.

Концентрация межузельных протонов, вероятно, оказывает значительно меньшее влияние на скорость травления протонообменных слоев, по сравнению с концентрацией протонов, находящихся в кислородных плоскостях кристаллической решетки твердого раствора H:LiNbO₃. По этой причине уход части межузельных протонов из верхнего слоя β₂фазы существенно не изменяет скорость ее химического травления.

Таким образом, стабилизация неотожженных протонообменных волноводов в кристаллах ниобата лития, по-видимому, сопровождается перераспределением межузельных протонов между слоями β₁- и β₂-фаз без качественного изменения фазового состава волноводов.

Данная работа выполнена в рамках Программы государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства, договор № 13.G25.31.0004.

Библиографический список

1. Jackel J., Rice C.E., Veselka J.J.. Proton exchange for high-index waveguides in LiNbO₃. Appl. Phys. Lett. 1982. V.41. № 7. P.607-608.

2. Колосовский Е.А., Петров Д.В., Царев А.В.. Численный метод восстановления профиля показателя преломления диффузных волноводов. Квантовая электроника. 1981. Т.8. № 12. С.2557-2568.

3. Azanova I.S., Shevtsov D.I., Zhundrikov A.V., Kichigin V.I., Petukhov I.V., Volyntsev A.B. Chemical etching technique for investigation of a structure of annealed and un-annealed proton exchange channel LiNbO₃ waveguides. Ferroelectrics. 2008. V.374. № 1. P.110-121.

8

4. Коркишко Ю.Н., Федоров В.А. Структурно-фазовая диаграмма протонообменных H_xLi_{1-x}NbO₃ волноводов в кристаллах ниобата лития. Кристаллография. 1999. Т.44. № 2. С.237-246.

5. Коркишко Ю.Н., Федоров В.А.. Зависимость показателя преломления от концентрации протонов в H:LiNbO₃ волноводах. Ж. техн. физики. 1999. Т.69. № 3. С.47 – 57.

6. Cabrera J.M., Olivares J., Carrascosa M., Rams J., Müller R., Dieguez E.. Hydrogen in lithium niobate. Advance in Physics. 1996. V.45. № 5. P.349 – 392.

7. Волынцев А.Б., Жундриков А.В., Кичигин В.И., Петухов И.В., Тайсин И.Ф. Исследование структурных и оптических свойств волноводных слоев на LiNbO₃, полученных в расплаве бензойной кислоты с добавлением бензоатов Li, Mg, Na. Вестн. Перм. ун-та. 2007. Вып.1. Физика. С.92-101.

8. F. Laurell, J. Webjorn, G. Arvidsson, J. Holmberg. Wet etching of proton-exchanged lithium niobate - A novel processing technique. J. Lightwave Technol. 1992. V.10. № 11. P.1606 - 1609.

Сведения об авторах

Жундриков Алексей Викторович, аспирант Пермского государственного университета 614990, г.Пермь, ул. Букирева, 15 Пермский государственный университет e-mail: <u>urbanistan@yandex.ru</u>

Кичигин Владимир Иванович, ведущий научный сотрудник Естественнонаучного института Пермского государственного университета, кхн. 614990, г.Пермь, ул. Букирева, 15 Пермский государственый университет Тел. (342)2396452; e-mail: <u>kichigin@psu.ru</u>

Петухов Игорь Валентинович, доцент Пермского государственного университета, кхн. 614990, г.Пермь, ул. Букирева, 15 Пермский университет Тел. (342)2396671; e-mail: <u>petukhov-309@yandex.ru</u>

Шевцов Денис Игоревич, ассистент Пермского государственного университета, кфмн. 614990, г.Пермь, ул. Букирева, 15 Пермский университет Тел. (342)2396410; e-mail: shevtsov@psu.ru