УДК 621.452.225

К выбору параметров прямоточного воздушно-реактивного двигателя, обеспечивающих заданный режим маршевого полёта летательного аппарата

Борисов А.Д.*, Васютичев А.С.**, Лаптев И.В.***

Исследовательский центр имени М.В. Келдыша, Онежская ул., 8, Москва, 125438, Россия *e-mail: a-d-borisov@yandex.ru **e-mail: aleksey.vas@mail.ru ***e-mail: igor_laptev@hotbox.ru

Аннотация

В работе рассматриваются вопросы выбора параметров прямоточного воздушно-реактивного двигателя, обеспечивающих заданный режим маршевого полёта летательного аппарата. Представлена инженерная методика их оптимизации. Приводится пример расчёта для одного из вариантов разгонно-маршевого прямоточного воздушно-реактивного двигателя.

Ключевые слова: прямоточный воздушно-реактивный двигатель, летательный аппарат, маршевый полет, оптимизация.

Введение

Основной особенностью прямоточных воздушно-реактивных двигателей (ПВРД) [1] является прямая связь параметров внутри двигательной установки (ДУ) с параметрами набегающего воздушного потока, которые в свою очередь определяют

действующие на аппарат аэродинамические силы [2]. Поэтому процесс создания ПВРД неотделим от проектирования летательного аппарата (ЛА) в целом [3,4]. Выбор компоновочной схемы ЛА с ПВРД требует рассмотрения большого количества вариантов. При разработке новой схемы, как правило, руководствуются существующими прототипами и/или аналогами [5-7]. Определение проходных сечений рабочего тракта ДУ, запаса топлива и способа разгона до точки запуска ПВРД, диапазонов регулирования и прочих параметров осуществляется в процессе их оптимизации на траекториях полёта [8] при заданных ограничениях, в первую очередь габаритно-массовых.

Большое количество параметров, определяющих полёт ЛА и рабочие характеристики его ДУ, их существенное влияние друг на друга затрудняют анализ качества принятого схемного решения. Возникает необходимость в создании инженерных методик, позволяющих увязать параметры ДУ и ЛА.

Определение геометрии и параметров ДУ

Рисунок 1. Схема ПВРД

Будем считать, что, исходя из массово-габаритных ограничений, известны характерные размеры:

D – диаметр миделя ЛА (для неосесимметричной схемы – площадь миделя);

L – длина ЛА.

Параметры топлива:

*H*_{*u*} – низшая теплотворная способность;

*L*₀ – стехиометрический коэффициент;

*ρ*_{*monл*} – плотность топлива.

Заданные высота и скорость маршевого полёта определяют параметры на входе в воздухозаборное устройство (ВЗУ):

*p*_{*н*}, *T*_{*н*} – давление и температура в зависимости от заданной высоты;

М – число Маха набегающего потока.

Исходя из этих значений выбирается ВЗУ для ЛА. Так как рассматривается маршевый полёт на фиксированной высоте, необходимо задать:

*σ*_{взу} – коэффициент восстановления полного давления;

 φ_{B3V} – коэффициент расхода ВЗУ;

*С*_{хд} – коэффициент сопротивления по жидкой линии тока.

Для определения всех параметров потока за ВЗУ требуется установить значение ещё одной величины – площади входа ВЗУ *F*_{B3V}, фиксирующей расход воздуха через ДУ. Эта величина рассматривается как один из переменных параметров, и расчёты производятся для набора её значений.

В соответствии с габаритными и другими (например, обеспечение нужных уровней скоростей) ограничениями выбираются геометрические характеристики воздушного канала и КС:

*d*_{кан} – диаметр воздушного канала;

*l*_{кан} – длина воздушного канала;

*d*_{*кс*} – диаметр камеры сгорания;

*l*_{*кс*} – длина камеры сгорания;

и оцениваются потери полного давления:

 $\sigma_{_{\kappa a \mu}}$ – потери полного давления по тракту (от ВЗУ до камеры);

 $\sigma_{\phi p}$ — потери полного давления на фронтовых устройствах.

С учётом переменности свойств воздуха определяются параметры торможения набегающего потока: p_{0n} , T_{0n} , i_{0n} – полные давление, температура и энтальпия [9-15]. Полное давление в начальном сечении камеры сгорания p_{0x} определяется полным давлением в набегающем потоке и потерями: на торможение ВЗУ, на трение в канале и т.д. (σ_{Σ}): $p_{0x} = p_{0n} \cdot \sigma_{\Sigma}$.

По заданной площади поперечного сечения камеры сгорания F_{KC} из уравнения расхода определяется приведённая скорость λ_x в сечении, предшествующем месту подачи горючего в камеру дожигания, т.н. «холодное» сечение.

Для цилиндрической камеры сгорания импульс потока в горячем сечении камеры сгорания *I*, равен импульсу в холодном:

$$I_{x} = p_{0x}\sigma_{\kappa mp}F_{KC}f(\lambda_{x},\kappa_{x})$$

$$f(\lambda,\kappa) = \left(\lambda^2 + 1\right)\left(1 - \frac{\kappa - 1}{\kappa + 1}\lambda^2\right)^{\frac{1}{\kappa - 1}}$$

Из закона сохранения энергии определяется полная энтальпия в горячем сечении камеры дожигания: [16]

$$i_{0z} = \frac{1}{\beta} \left[i_{0x} + \frac{H_u \varphi_{cz} + i_{cm6030}}{\alpha L_0} \right]$$

где

α – коэффициент избытка воздуха;

 φ_{cz} – коэффициент полноты сгорания;

$$\beta = 1 + \frac{1}{\alpha L_0}$$
 – коэффициент изменения массы;

*i*_{ствозд} – энтальпия воздуха при стандартной температуре.

В рамках используемой методики расчёта тягово-экономических характеристик ПВРД коэффициент полноты сгорания задаётся в виде зависимости от коэффициента избытка воздуха. Сам коэффициент избытка воздуха является варьируемым параметром, чьё оптимальное значение требуется выбрать.

Совместным решением уравнений расхода и сохранения импульса определяется приведённая скорость λ_e и полное давление p_{0e} в горячем сечении камеры сгорания. Из уравнения расхода определяется площадь критического сечения сопла F_{sp} и параметры потока на срезе сопла.

Тяга прямоточного двигателя R_x есть разность входного I_{ex} и выходного I_a импульсов [17]:

$$R_{x} = I_{a} - I_{ex} - p_{\mu} (F_{a} - F_{ex}) - C_{x\partial} F_{Mu\partial} q_{\mu}$$

где F_{ex} , $F_{mu\partial}$, F_{a} — площади входа ВЗУ, миделя аппарата и среза сопла соответственно; q_{μ} — скоростной напор набегающего на аппарат потока.

Результатом расчёта характеристик ПВРД являются тяга, импульс и площадь критического сечения сопла [4,18].

Определение основных характеристик ЛА

Выделим в массе ЛА три составляющие: массу конструкции (без учёта массы крыльев) m_{dry} , массу крыльев m_{wings} и запас топлива m_{fuel} необходимый для совершения полёта на маршевом участке траектории:

$$m_{JA} = m_{dry} + m_{wings} + m_{fuel} \tag{1}$$

Запас топлива, требуемый для совершения маршевого полёта длительностью т, определяется формулой (*R_x* – тяга аппарата, *I* – удельная тяга (импульс)):

$$m_{fuel} = G_{fuel} \cdot \tau = \frac{R_x}{I} \cdot \tau \tag{2}$$

Масса крыльев:

$$m_{wings} = \rho_{wings} \cdot f_{wings} \tag{3}$$

где f_{wings} – площадь крыльев в плане, ρ_{wings} – среднее значение массы, приходящейся на единицу площади крыла.

Значения *m*_{dry} и *ρ*_{wings} выбираются исходя из анализа существующих образцов и прототипов.

Необходимо, чтобы сила тяжести, действующая на ЛА, уравновешивалась подъёмной силой, которую можно выразить через коэффициент подъёмной силы [20]:

$$R_{y} = C_{y} \cdot f_{wings} \cdot \frac{\rho u^{2}}{2} = \frac{1}{2} C_{y} \cdot f_{wings} \cdot \kappa M^{2} p_{\mu}$$
(4)

Здесь к – показатель адиабаты воздуха, М – число Маха полёта, *p_н* – давление набегающего потока.

Согласно [1] для расчёта производной коэффициента подъёмной силы в связанной системе координат по углу атаки $C_{y_1 u_3, x_p}^{\alpha}$ для изолированных крыльев с трапециевидными консолями при больших значениях параметра $\lambda_k \sqrt{M^2 - 1}$ (λ_k – удлинение консолей) можно пользоваться теоретическими выражениями для крыльев бесконечного размаха:

$$C_{y1\,u3.kp}^{a} = \frac{4}{\sqrt{M^2 - 1}}$$
(5)

*C*_{у1} при этом в рамках линейной теории может быть выражено формулой:

$$C_{y1} = C^{\alpha}_{y1\,u3.\kappa p} \cdot \alpha_{attack} \tag{6}$$

где α_{attack} – угол атаки в радианах.

С учетом формул (4) - (6) получим соотношение, при котором проекции сил на вертикальную ось уравновешиваются, т.е. ЛА летит на фиксированной высоте:

$$m_{JIA} = \frac{2\kappa M^2}{\sqrt{M^2 - 1}} \frac{p_{\mu}}{g} \cdot \alpha_{attack} \cdot f_{wings}$$
(7)

Изменение массы аппарата $m_{\pi A}$ обусловлено выработкой (расходом) топлива G_{fuel} и уносом теплозащитных покрытий конструкции $G_{T3\Pi}$. Потребная для

горизонтального полёта с постоянной скоростью тяга аппарата R_x связана с его весом посредством коэффициента $K = C_y / C_x$, называемого аэродинамическим качеством: $R_x = m_{\pi A} \cdot g / K$.

Уменьшение массы аппарата за время dt (I – удельная тяга (импульс), м/с):

$$-dm_{JA} = \left(G_{fuel} + G_{T3II}\right)dt = \left(\frac{R_x}{I} + G_{T3II}\right)dt = \left(\frac{m_{JA}}{I} + G_{T3II}\right)dt$$

Интегрируя данное уравнение, получим:

$$t = \frac{KI}{g} \ln \frac{m_0 + \frac{KI}{g} G_{T3II}}{m_1 + \frac{KI}{g} G_{T3II}}$$
(8)

Откуда (далее под I будем иметь в виду импульс в секундах, $m_{\Lambda A_0}$ – масса ЛА в начале участка марша, τ – его продолжительность до полной выработки топлива):

$$e^{\frac{\tau}{KI}} = \frac{m_{JA_0} + KIG_{T3II}}{\left(m_{JA_0} - m_{fuel}\right) + KIG_{T3II}}$$

Если считать, что унос материала конструкции пренебрежимо мал, то

$$m_{JIA_0} = m_{fuel} \frac{e^{\frac{\tau}{KI}}}{e^{\frac{\tau}{KI}} - 1}$$
(9)

Решая систему уравнений (1), (7) и (9), получим соотношения для полной массы ЛА, запаса топлива и потребной площади крыльев при совершении маршевого полёта продолжительностью т:

$$\begin{cases} m_{fuel} = \frac{m_{dry}}{B - \rho_{wings}} \cdot \frac{B}{W} - 1 \\ m_{JIA_0} = \frac{B m_{dry}}{B - \rho_{wings}} \cdot \frac{B}{W} - 1 \\ f_{wings} = \frac{1}{W} \frac{B m_{dry}}{B - \rho_{wings}} \cdot \frac{B}{W} - 1 \end{cases}$$
(10)

Здесь введены обозначения: $B = \frac{e^{\frac{\tau}{KI}}}{e^{\frac{\tau}{KI}} - 1}$ и $W = \frac{2\kappa M^2}{\sqrt{M^2 - 1}} \frac{p_{\mu}}{g} \cdot \alpha_{ama\kappa u}$.

Оптимизация параметров

Полученная выше формула является несколько изменённой формулой Бреге, которая, в свою очередь, является адаптированной для полёта в атмосфере формулой Циолковского. При выводе формулы предполагалось, что импульс ДУ и угол атаки остаются постоянными. Поддержание заданной высоты приводит к необходимости некоторой корректировки режима работы. Таким образом, время, определяемое формулой (8) не есть, строго говоря, реальное время работы двигательных установок, но является некоторым критерием, с помощью которого можно оценить относительное совершенство рассматриваемых схем.

Расчёт проводился при скорости полёта соответствующей числу M = 6 на высоте 30000 метров. При этом варьировались относительная площадь входного сечения ВЗУ $F_{ex} = 0.3 \div 1.6$ и коэффициент избытка воздуха $\alpha = 1 \div 2.5$. Относительные величины площадей отнесены к площади цилиндрической камеры сгорания.

Были приняты следующие исходные данные:

- Диаметр камеры сгорания $D_{KC} = 600 \text{ мм.}$
- ВЗУ на число М=5. Коэффициент восстановления полного давления σ, коэффициент расхода ВЗУ φ, коэффициент сопротивления по жидкой линии тока *C_{x∂}* в соответствии с Табл. 1.

Табл. 1

М	1.5	2	2.5	3	3.5	4	4.5	5	6
σ	0.9	0.98	0.79	0.66	0.54	0.44	0.33	0.24	0.16
φ	0.14	0.2	0.29	0.41	0.55	0.68	0.83	1	1
$C_{x\partial}$	0.54	0.47	0.36	0.22	0.12	0.06	0.02	0	0

- Коэффициент восстановления полного давления в воздушном канале и предкамерном диффузоре σ_{кан} = 0,9.
- Диаметр воздушного канала принят исходя из условия получения в конце канала скорости, соответствующей безразмерному коэффициенту скорости λ_{кан} = 0,3.
- Коэффициент гидравлических потерь на фронтовых устройствах $\zeta = 3$.
- Коэффициент полноты сгорания в зависимости от коэффициента избытка воздуха в соответствии с Табл. 2.

Табл. 2

α	1	1.2	1.4	1.6	1.8	2	2.2	2.3	2.4	2.5	2.6	2.8	3	10
φсг	0.84	0.874	0.9	0.915	0.92	0.925	0.91	0.9	0.873	0.84	0.795	0.7	0.615	0.5

- Коэффициент потери импульса сопла $\eta_c = 0.98$.
- Диаметр выходного сечения сопла $D_c = 600 \text{ мм}$.
- Низшая теплотворная способность H_u = 10250 ккал/кг [19]; стехиометрический коэффициент L₀ =14.8.

Были получены зависимости характеристик (тяги, удельного импульса, площади критического сечения сопла) от двух параметров – коэффициента избытка

воздуха α в КС и относительной площади входа ВЗУ F_{6x} . Следует обратить внимание, что от 0,3 до 1 F_{6x} увеличивается за счёт увеличения абсолютной площади входа ВЗУ, диаметр КС при этом остаётся неизменным и равным диаметру миделя двигателя. Дальнейшее увеличение F_{6x} достигается путём уменьшения площади камеры сгорания. Этим объясняется характерный излом в полученных зависимостях (рисунок 2, рисунок 3).

Рисунок 2. Зависимость тяги двигателя от коэффициента избытка воздуха и

относительной площади входа ВЗУ

Рисунок 3. Зависимость удельного импульса двигателя от коэффициента

избытка воздуха и относительной площади входа ВЗУ

При выбранном значении K (в диапазоне 3...5) можно найти точку (табл. 3) на плоскости (α , F_{ex}), в которой расход топлива минимален:

Табл. 3

Коэффициент аэродинамического качества, К	5.0
Относительная площадь входа ВЗУ, <i>F</i> _{ex}	1.0
Коэффициент избытка окислителя, α	1.09
Запас топлива, $M_T[\kappa_2]$	58.45
Тяга, R_x [κ г]	422.8
Удельный импульс, <i>J</i> [<i>c</i>]	723.7
Площадь крыльев, $F_{\kappa p} \left[M^2 \right]$	9.706
Относительная площадь критического сечения сопла, $F_{\kappa pum}$	0.1867

Выводы

Разработана инженерная методика оптимизации параметров ПВРД, обеспечивающих заданный режим маршевого полёта.

Выполнены параметрические расчеты для варианта ЛА с ПВРД диаметром камеры 600 мм.

Представлены зависимости тяги и удельного импульса от относительной площади входа воздухозаборного устройства и коэффициента избытка воздуха. Наблюдается характерный излом зависимостей, связанный с тем, что увеличение площади входа больше 1 возможно только при уменьшении площади камеры сгорания.

Созданная методика используется при предварительном определении параметров разгонно-маршевых ПВРД.

Библиографический список

1. Fry R.S. A Century of Ramjet Propulsion Technology Evolution // Journal of Propulsion and Power, 2004, vol. 20, no. 1, pp. 27 - 58.

 Александров В.Н., Быцкевич В.М., Верхоломов В.К. и др. Интегральные прямоточные воздушно-реактивные двигатели на твёрдых топливах. Основы теории и расчёта / Под ред. Л.С. Яновского. – М.: Академкнига, 2006. – 343 с.

 Лебедев А.А., Чернобровкин Л.С. Динамика полёта беспилотных летательных аппаратов. Учебное пособие для вузов. Изд. 2-е, переработанное и доп. – М.: Машиностроение, 1973. – 616 с. 4. Карасев B.H., Левин B.M. Моделирование тяговых характеристик воздушно-реактивного больших сверхзвуковых прямоточного двигателя для 2013. скоростей // Труды MAИ, № 64. URL: полета http://trudymai.ru/published.php?ID=36551

Escher W.J.D., Foreman K.M. Major ramjet programs in the U.S. // ISABE Paper
 2003-1072, 2003, pp. 1 - 56.

Hewitt P. Status of Ramjet Programs in the United States // AIAA Paper 2008-5265,
 2008, pp. 1 - 10.

 Verstraete D., Palmer J.L., Hornung M. Preliminary Sizing Correlations for Fixed-Wing Unmanned Aerial Vehicle Characteristics // Journal of Aircraft, 2018, vol. 55, no. 2, pp. 715 - 726.

 Ahuja V., Hartfield R.J. Optimization of Combined Rocket and Ramjet/Scramjet Ballistic Missile Designs // Journal of Propulsion and Power, 2015, vol. 31, no. 6, pp. 1544
 1550.

9. Ананьев А.В., Борисов Д.М., Васютичев А.С. и др. Численное моделирование пространственных смешанных двухфазных течений с химическими превращениями применительно к воздушно-реактивным двигателям // Вестник Московского авиационного института. 2009. Т. 16. № 2. С. 131 - 140.

 Petters D.P., Leingang J.L. Rapid computer simulation of ramjet performance // AIAA Paper 1993-2049, 1993, pp. 1 - 8.

 Ананьев А.В., Борисов Д.М., Лаптев И.В. Моделирование горения углеводородного топлива в сверхзвуковых потоках в каналах сложной формы // Вестник Московского авиационного института. 2011. Т. 18. № 5. С. 42 - 48. 12. Brilliant H.M. Analysis of Scramjet Engines Using Energy Methods // AIAA Paper 1995-2767, 1995, pp. 1 - 12.

Сунцов П.С., Луковников А.В., Фокин Д.Б. Особенности математического 13. моделирования ракетно-прямоточных двигателей высокоскоростных для летательных аппаратов // Труды МАИ. 2011. № 46. URL: http://trudymai.ru/published.php?ID=26090

Riggins D.W., McClinton CR. Thrust Modeling for Hypersonic Engines // AIAA
 Paper 1995-6081, 1995, pp. 1 - 18.

15. Варшавский Г.А., Губер Е.Я., Киселёв А.П. К вопросу о термодинамике равновесных течений газовых смесей, образованных соединениями С, Н, N, O. Труды ЦАГИ, вып. № 978. – М.: Бюро научной информации ЦАГИ, 1966. – 69 с.

16. Angelucci S., Roffe G., Baronti P. The single throat ramjet and its application to cruising and accelerating systems // AIAA Papers 1979-7043, 1979, pp. 1 - 10.

17. Huang S., Tan Y., Li X.-D., Ren H., Li H. Quasi-one-dimensional analysis on thrust performance of ramjet and scramjet // AIAA Paper 2017-2166, 2017, pp. 1 - 10.

18. Борисов А.Д. Исследование влияния способа подачи струй в камеру на эффективность смешения и горения топливо-воздушной смеси // Труды МАИ. 2016.
№ 90. URL: <u>http://trudymai.ru/published.php?ID=74721</u>

Smith N.K., Good W.D. Enthalpies of Combustion of Ramjet Fuels // AIAA Journal,
 1979, vol. 17, no. 8, pp. 905 - 907.

Drela M. Flight vehicle aerodynamics, Cambridge, Massachusetts, The MIT Press,
 2014, 304 p.