Исследование физико-механических свойств 4D углеродуглеродного композиционного материала на макро и микро уровнях при действии высоких температур

А.Л. Медведский, Ю.В. Корнев, А.С. Курбатов

Аннотация.

Работа посвящена определению физико-механических характеристик на макро и микро уровнях 4D армированных углерод-углеродных композиционных материалов (УУКМ) при действии температурного поля. В работе предложена методика определения физикомеханических характеристик 4D армированных углерод-углеродных композиционных на основе методов наноиндентирования наполнителя и связующего. Определены упругие характеристики компонент пространственно армированного УУКМ.

Ключевые слова: 4D углерод-углеродные композиционные материалы; упругие характеристики; эксперимент; методика; наноиндентирование.

Введение.

Углерод-углеродные композиционные материалы обладают уникальным комплексом прочностных и физических свойств, которые отличают их от современных конструкционных материалов (сталей, сплавов, полимерных материалов). Их применение в авиакосмической технике является предметом интенсивных научных и опытно-конструкторских работ в России и за рубежом. Одним из наиболее важных вопросов, является экспериментальное определение теплофизических и физико-механических свойств углерод-углеродных композиционных материалов.

Определение физико-механических характеристик УУКМ на макроуровне при действии высоких температур.

В настоящей работе проведены испытания 4D армированного углерод-углеродного композиционного материала, представительный объем которого показан на рисунке 1 (связующее условно не показано).

Образцы материала формировались из цилиндрического образца, методами фрезерования алмазными дисками. На рисунке 2 представлена карта раскроя цилиндрической заготовки. Рисунки 3 - 5 соответствует раскроям частей № 1 – 3 с соответствующими номерами испытываемых образцов. На рисунке 6 представлена фотография исходной цилиндрической заготовки.

Рис. 2

Рис. 3

Рис. 4

Механические испытания на растяжение и сжатие проводились на образцах, геометрические размеры которых представлены на рисунках 7 и 8.

R_z20/

 140 ± 0.5

Рис. 7.

Для определения коэффициентов теплопроводности изготавливались цилиндрические образцы, геометрические размеры которых приведены на рисунках 9 – 10.

Рис. 9. Образец для определения теплопроводности при температуре 50°С.

Рис. 10. Образец для измерения теплопроводности в диапазоне температур 1000° - 2800°С.

Испытания при комнатных температурах проводились на машине Instron 1195, Instron Ltd., Великобритания. Скорость перемещения активной опоры при растяжении, сдвиге и сжатии составляла (1-5) мм/мин. Нагрузки измерялись при помощи тензодинамометра. Регистрация измеряемых параметров осуществлялась на графопостроителе испытательной машины. Погрешности измерения нагрузок оцениваются величиной не более 1%.

Испытания при высоких температурах проводились на установке УВТК в среде защитного газа – аргона (на рис. 11 показана её принципиальная схема). Нагрев образцов осуществлялся комбинированным способом – за счет лучистой энергии и путем теплопроводности через тонкие (~1 мм) слои защитного газа между нагревателями и образцом.

Измерение температуры происходило в нейтральной среде. Из камеры, в которой находится образец, откачивался воздух и закачивался аргон. Образец цилиндрической формы зажимается в токоподводах. Крепление образца осуществляется таким способом, чтобы прижимные устройства были удалены на максимальное расстояние друг от друга. Это позволяет обеспечить равномерный прогрев образца. В зоне равномерного прогрева просверливается два отверстия глубиной примерно на середину толщины. Таким образом, замер температуры образца производят в двух точках: на поверхности и в центре образца. Далее через образец пропускают электрический ток и выдерживают его до тех пор, пока показания ваттметра не выровняются. Снимая показания силы тока, проходящего через образец, и, используя градуировочную таблицу зависимости силы тока от температуры, устанавливают температуры на поверхности и на глубине образца.

Скорость нагрева находилась в пределах (25-50) °С/с. Яркостная температура поверхности рабочей части образцов измерялась визуально оптическим эталонным пирометром

6

ЭОП-66. (При необходимости при Т до 900°С может применяться ХА термопара). Для передачи нагрузок использовалась специальная водоохлаждаемая оснастка – захваты в опытах на растяжение, реверс – на сжатие, приспособления на сдвиг. Скорость перемещения активного захвата и траверсы приспособления составляла 15 мм/мин. Нагрузки измерялись и регистрировались тензодинамометром и графопостроителем приборной стойки машины Instron мод. 1185. Погрешности измерения нагрузок и температур оцениваются величиной не более ~1,0% и ~1,5% соответственно.

Рис. 11. Принципиальная схема высокотемпературной установки УВТК:

1 – образец; 2 – динамометр машины Instron мод.1185; 3 – приборная стойка машины Instron мод.1185; 4 – графитовые нагреватели; 5 – защитная камера; 6 – захваты; 7 – трансформатор ОСУ-80;8 –регулятор напряжения РОТ-630; 9 – прибор Р-III (задатчик); 10 – оптический пирометр ЭОП-66;11 – ампервольтомметр Ф30; 12 – индикатор расхода газа; 13 – манометр; 14 – электропривод

Результаты испытаний на растяжение и сжатие при различных температурах представлены в таблице 1.

Таблица 1

Тип испытания	Температура, °С	σ_{e} , кгс/см 2	$E \cdot 10^{-3}$,кгс/см 2	$\mathcal{E}_p,\%$
Растяжение вдоль оси z	20	1115	519	0,21
Растяжение вдоль оси z	1500	1193	526	
Растяжение вдоль оси z	2000	1159	659	
Растяжение вдоль оси z	2500	1025	612	
		I	Таблица 1	(продолжен
Растяжение вдоль оси х	20	340	194	0,18

Растяжение вдоль оси х	1500	408	201	
Растяжение вдоль оси х	2000	387	228	
Растяжение вдоль оси х	2500	344	182	
Сжатие вдоль оси z	20	1585	496	0,33
Сжатие вдоль оси z	1500	1933	669	
Сжатие вдоль оси z	2000	2028	749	
Сжатие вдоль оси z	2500	2060	506	
Сжатие вдоль оси х	20	670	191	0,36
Сжатие вдоль оси х	1500	783	248	
Сжатие вдоль оси х	2000	871	250	
Сжатие вдоль оси х	2500	804	216	

Результаты определения коэффициентов теплопроводности материала вдоль оси X приведены в таблице 2 и на рисунке 12.

Таблица 2

Теплопроводность УУКМ при высоких температурах в направлении оси Z(Y)

T,°C	100	400	600	1000	1200	1600	1800	2000	2200	2400	2500
λ_x , D, ((*1())	40.2	3.6	83	4 1	63	4.0	6.0	62	5.1	4.2	4.5
BT/(M*K)	40.2	5.0	0.5	7.1	0.5	7.0	0.0	0.2	5.1	T.	т.5

Аналогичные зависимости коэффициента теплопроводности материала вдоль оси X приведены в таблице 3 и на рисунке 13.

Таблица 3

Теплопроводность УУКМ при высоких температурах в направлении оси	Х
--	---

T,°C	100	400	600	1000	1200	1600	1800	2000	2200	2400	2500
λ _z , Βτ/(м*K)	27.1	1.1	3.5	0.7	4.1	7.6	6.3	5.5	4.6	2.8	1.4

Значения коэффициента линейного расширения материала вдоль соответствующих осей сведены в таблицы 4, 5 и представлены на рисунках 14 и 15.

Таблица 4

Коэффициент линейного температурного расширения УУКМ при высоких температурах в направлении оси Х

T,°C	100	400	600	1000	1200	1600	1800	2000	2200	2400	2500
$\alpha_x \cdot 10^6$, K ⁻¹	0.89	1.00	1.26	1.94	2.31	2.93	3.22	3.52	3.86	4.33	4.62

Таблица 5

Коэффициент линейного температурного расширения УУКМ при высоких температурах в направлении оси Z(Y)

T,°C	100	400	600	1000	1200	1600	1800	2000	2200	2400	2500
$\alpha_z \cdot 10^6$, K ⁻¹	-0.6	0.05	0.47	1.27	1.66	2.33	2.61	2.89	3.00	3.08	3.08

Определение физико-механических характеристик компонент УУКМ методами наноиндентирования.

Для более подробного описания углерод-углеродного композиционного материала важно знать не только свойства материала в целом, но и его компонентов. Для решения этого вопроса был применен перспективный метод наноиндентирования.

В данной работе проводилось исследование компонентов углерод-углеродного материала методом наноиндетирования с применением измерительного комплекса NanoTest 600. Эксперимент проводился с целью получения свойств углеродных стержней в продольном и поперечном направлении, а также пирографитового связующего.

Рабочим органом комплекса NanoTest 600 является маятник (рис. 16), который вращается на шарнире, свободном от трения. Маятник разработан таким образом, чтобы быть лёгким и достаточно жёстким при максимально прикладываемой силе (500 мН). Стержень маятника выполнен из керамики, имеет цилиндрическую форму, на конце маятника установлена индукционная катушка. Под действием электрического тока катушка движется по направлению к магниту, задавая закон движения алмазного индентора к образцу. Перемещение индентора измеряется емкостным датчиком. Глубина проникновения алмазного индентора в образец задается с погрешностью 0,04 нм.

Рис. 16. Схема рабочего узла комплекса NanoTest 600.

Эксперимент на приборе NanoTest 600 проводился по следующей методике. Образец УУКМ размером 13 × 13 мм. и толщиной 1,5 мм закреплялся на подложке при помощи клея, затем образец подводился к индентору. Индентирование образца проводилось в 10 точках с интервалом 20-30 мкм. Нагрузка увеличивалась с постоянной скоростью до достижения заданной максимальной нагрузки (для скорости 0,05 мH/с - 1 мH). Скорость индентирования менялась в соответствии с величиной максимальной нагрузки из расчёта, что цикл нагрузки должен занимать 20 секунд. Затем максимальная нагрузка фиксировалась на 10 секунд и определялся так называемый «крип»-эффект, т.е. при фиксированной (постоянной) нагрузке происходило дальнейшее увеличение глубины индентирования. Разгрузка проводилась с той же скоростью, что и нагружение. В данном эксперименте использовался «индентор Берковича» [3] с углом при вершине 65,3° и радиусом закругления 200нм.

Общий вид образцов и исследуемые зоны представлены на рисунках 17 - 18

Рис. 18 Исследуемые зоны (а – поперечное сечение стержня, б – продольное сечение стержня, в – связующее)

На рисунках 19 – 20 приведены изображения с пьезопрофилометра с указанием координат точек индентирования.

В ходе эксперимента были получены зависимости нагрузки от глубины проникновения в десяти точках для каждого образца при максимальных нагрузках 0,1; 0,5; 1 и 10 мН для всех трех областей при температуре 22 оС. На рис. 21 - 23 представлены средние зависимости для нагрузки 10 мН для трех зон.

Рис. 22. Зависимости нагрузка – глубина индентирования для зоны б)

По полученным экспериментальным данным вычислены следующие параметры системы: максимальная глубина проникновения, пластическая деформация, твердость, приведенный модуль, упругое восстановление, податливость контакта, пластическая работу, упругая работа,. При расчёте приведённого модуля (модуль упругости системы образец + индентор) использовалась модель Оливера-Фара [3].

Результаты обработки экспериментальных данных представлены в таблице 6.

Таблица 6

	Стержень в	Стержень в	
	продольном	поперечном	Связующее
	направлении	направлении	
Максимальное смещение, нм	621,32	1223,81	2284,86
Пластическое смещение, нм	572,99	1159,63	1749,41
Твёрдость, ГПа	1,21	0,30	0.20
Приведённый модуль, ГПа	46,37	17,53	7.41
Модуль Юнга, ГПа	43.97	16.2	6.78
Упругое восстановление	0,08	0,05	0.03
Податливость контакта, нм/мН	6,43	8,54	9.37
Пластическая работа, нДж	0,93	2,13	2.74
Упругая работа, нДж	0,49	0,66	0.81
Номер индента	4	6	1

Механические характеристики компонент УУКМ (максимальная нагрузка 10,01 мН)

Таким образом, предложенная методика позволяет определить физико-механические характеристики компонент, образующих 4D армированный композиционный материал. Принципиальным в данном подходе является определение характеристик компонент готового композиционного материала, учитывающего изменения свойств, связанных с технологией производства УУКМ.

Библиографический список.

1. Композиционные материалы: Справочник/ Васильев В.В., Протасов В.Д., В.В. Болотин и др.; Под общ. Ред. В.В. Васильева, Ю.М. Тарнопольского. – М.: Машиностроение, 1990. – 512 с.

2. Высокотемпературные исследования тепло- и электропроводности твердых тел, М.: «Энергия»,1971. - 89 с.

3. Antony C. Fisher-Cripps. Nanoindentation. – Springer-Verlag New York, 2002. – 198 p.

Сведения об авторах.

Медведский Александр Леонидович, заместитель проректора по учебной части Московского авиационного института (государственного технического университета), к.ф.-м.н, доцент. Волоколамское ш., 4, Москва, А-80, ГСП-3, 125993; тел.: 8-985-779-64-53; e-mail:mdv66@mail.ru Корнев Юрий Витальевич, научный сотрудник института прикладной механики РАН Ленинский проспект, 32А, Москва, 119991; тел.:8-916-902-36-16; Курбатов Алексей Сергеевич, аспирант Московского авиационного института (государственного технического университета). Ул. Ангарская, 4, кв.182, Москва, 125635; тел.: 707-33-24; e-mail: defunt@inbox.ru