УДК 621.43.056

Результаты испытаний закоксованных форсунок камер сгорания семейства НК промывкой смесью керосина с техническим моющим средством

Маркушин А.Н., Бакланов А.В.*

Казанское моторостроительное производственное объединение, ул. Дементьева, 1, Казань, 420036, Россия

*e-mail: andreybaklanov@bk.ru

Аннотация

изложены результаты работы по промывке настоящей статье частично закоксованных форсунок камер сгорания семейства НК, различным составом топливной смеси «керосин-Депирол» [1]. Представлена конструкция установки, а так же одногорелочного отсека камеры сгорания на которых проводились исследования форсунок. По результатам работ выявлено, что топливная смесь «керосин-Депирол» эффективно снимает И удаляет отложения продуктов форсунок. термического распада топлива закоксованных Максимальная c эффективность съема кокса находится в пределах концентрации «Депирола» в керосине 10...15%.

Ключевые слова: камера сгорания, эксперимент, форсунка, газотурбинный двигатель, коксоотложение, промывка, моющие средства.

Ввеление

Серьезным дефектом, ограничивающим ресурс, надежность и ухудшающим экологичность газотурбинного двигателя [2,3], является засорение каналов распыливающих деталей форсунок коллектора камеры сгорания продуктами коксования, которые образуются при нагревании проходящего через него топлива за счет окисления молекул углеводородного топлива растворенным в нем кислородом с образованием продуктов большой молекулярной массы и их дальнейшей полимеризацией в виде коксоподобных соединений, отложения которых выпадают на стенки каналов [4,5,6,7]. Поэтому работы посвященные проблеме очистки каналов форсунок от нагарообразования являются актуальными.

В настоящее время существуют различные способы борьбы с загрязнениями такого рода:

- 1. Конструктивный. Сущность способа заключается в создании форсунок, завихрителей, распылителей имеющих конструкцию исключающую образование коксовых отложений [8].
- 2. Очистка имеющихся отложений. Сущность способа заключается в подачи нагретого реагента и контроля степени очистки форсунок. Имеются различные вариации данного метода с применением различных реагентов и их комбинации, а так же способе проведения очистки в составе двигателя частичной или полной разборки двигателя [9,10].

Данные способы имеют свои недостатки, в частности сложность конструкции или наличие дорогостоящих установок для обеспечения нагретого реагента. В связи с

чем, задача обеспечения простого и более дешевого способа очистки загрязненных каналов форсунок является актуальной для газотурбинной техники [11].

В процессе эксплуатации авиационных двигателей семейства НК, с многофорсуночными камерами сгорания (НК-8, НК-86, НК-25, НК-32, НК-56, НК-64, НК-108, НК-93)[12], в следствии низкой термостабильности применяемого топлива, условий эксплуатации и других причин, происходит закоксование топливных каналов и форсунок фронтового устройства камеры сгорания продуктами разложения топлива, что приводит к досрочному съему изделий с эксплуатации [13,14].

Типовая форсунка камер сгорания семейства НК, состоит из корпуса 1, распылителя 2, гайки 3, уплотнительных колец 4, дросселирующей шайбы 5, сетчатого фильтра 6. Корпус 1 снабжен лопаточным завихрителем 7 из восьми лопаток, к которым припаиваются конические втулки 8, что способствует перемешиванию распыленного топлива с воздухом (рис.1) [15].

Рис.1. Состав форсунки

Применяемые известные в настоящее время методы очистки топливных каналов и форсунок (промывка камеры сгорания) не всегда эффективны, а в

некоторых случаях приводят к обратному явлению- забиванию форсунок частицами продуктов разложения топлива, отслоившимися со стенок коллектора.

Одними из методов устранения закоксования топливных коллекторов и форсунок так же являются применение антиокислительных добавок в топливо или периодическая промывка камеры сгорания активными веществами в смеси с топливом, которые растворяют нагарообразные или смолообразные отложения и удаляют их вместе с топливом [16,17].

Для проведения работ по оценке моющих свойств топливной смеси «керосин-Депирол» были подобраны 8 частично закоксованных форсунок с производительностью 0,48...0,74 л/мин (рис.2). Испытания проводились на однофорсуночном отсеке при температуре окружающего воздуха и топлива $\approx 20^{\circ}$ С. В качестве активного воздуха использовался сжатый воздух от стендовой воздушной сети. Давление топлива в форсунках поддерживалось в пределах 0,02...0,06 МПа.

Рис.2 Закоксованные форсунки

Стенд на котором проводились данные работы (рис. 3) работает по следующему принципу: воздух при помощи нагнетателя поступает на вход в расходомерный участок, представляющий собой цилиндрический канал с установленным в нем критическим соплом. Далее воздух поступает в подогреватель (электрическую печь), а затем транспортируется к однофорсуночному отсеку. Топливо к форсункам подается из топливной магистрали [18].

Стенд оборудован необходимыми системами регулирования, измерения параметров и их регистрации.

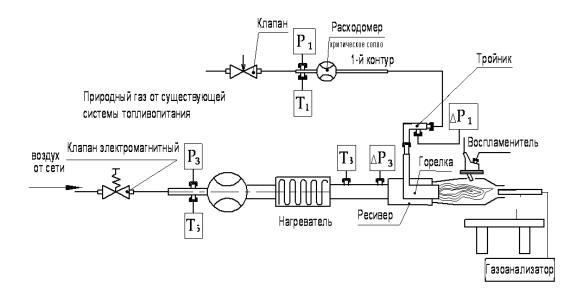


Рис.3. Стенд газодинамических и огневых испытаний горелочных устройств

Однофорсуночный отсек (Рис.4) состоит из диффузора (1) с установленным приемником давления (2) и термопреобразователем сопротивления (3). Жаровая труба (4) цилиндрической формы с отверстиями (5) для подвода воздуха в зону горения и смешения. Корпус отсека (6) является силовым элементом, к которому подсоединяется диффузор и фронтовая плита (7). Фронтовое устройство выполнено в виде крышки с нанесенными фигурным окном (8), в которое устанавливается форсунка. Окно необходимо для подвода воздуха к завихрителю форсунки. Также

во фронтовом устройстве имеются дугообразные кольцевые прорези (9) для подвода воздуха в кольцевой промежуток между корпусом отсека и жаровой трубой. Топливо при помощи штуцера (10) подается в топливный канал во фронтовом устройстве подводящем топливо к форсунке. Розжиг в отсеке производится при помощи воспламенителя (11) [19,20].

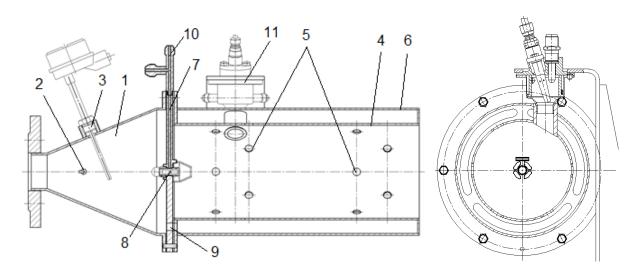


Рис.4 Схема однофорсуночного отсека

Оценка качества очистки форсунок проводилась через 30 и 60 минут работы на одногорелочном отсеке проливкой форсунок и определением их расхода (при $t_{\rm T}$ =25°C и $P_{\rm T}$ =2,94МПа).

В процессе испытаний визуально определялся процесс горения топливной смеси (рис.5). При проведении режимной работы наблюдается прерывистое горение. По мере очистки форсунок процесс горения стабилизируется. При содержании «Депирола» в топливе свыше 5% в выхлопной системе отсека наблюдаются отложения смол, которые после 30 минут работы отсека на керосине полностью удаляются.

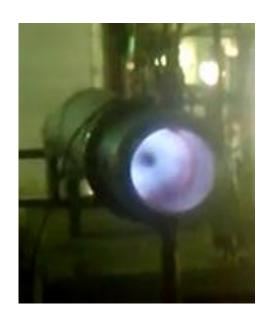
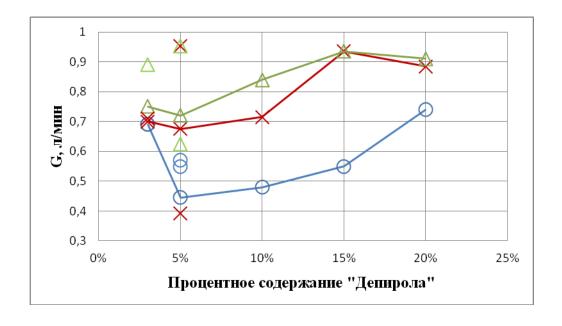


Рис. 5. Фото. Вид пламени при горении смеси «керосин-Депирол» Результаты испытаний по промывке топливной смесью «керосин-Депирол» представлены в таблице 1.

Расход смеси	% содержание «Депирола» в топливной смеси							
через	20%	15%	10%	5%	5%	5%	3%	3%
форсуноки	2070	1570	1070	370	370	370	370	370
(л/мин)								
До	0,74	0,55	0,48	0,55	0,57	0,445	0,69	0,69
испытания								
После	0,885	0,935	0,715	0,675	0,952	0,393	0,71	0,7
30 мин. работы								
После	0,911	0,935	0,84	0,72	0,952	0,625	0,75	0,89
60 мин.								
работы								


Анализ результатов испытаний показывает, что оптимальный состав смеси, эффективно снимающий отложения в форсунках, находится в пределах концентрации «Депирола» в керосине 5...20%. Однако при концентрации

«Депирола» в керосине свыше 5%, как отмечалось выше, в выхлопной системе отсека наблюдается отложение смол.

Для подтверждения полученной информации по оценке моющих свойств 5 и 3% концентрации «Депирола» в керосине были проведены дополнительные испытания закоксованных форсунок, которые показали снижение эффективности моющих свойств при 3% содержании «Депирола» в керосине.

Разброс результатов проливок при 3 и 5% концентрации «Депирола» в керосине при дополнительных испытаниях можно объяснить различным химическим составом кокса (форсунки были использованы с разных двигателей) и другими причинами.

График зависимости расходности форсунок до и после промывок в зависимости от концентрации «Депирола» в керосине представлен на рис.5.

о- До испытания, *- После 30 мин работы, ∆- После 60 мин работы

Рис. 5. Расходность форсунок в зависимости от концентрации «Депирола»

Выводы:

- 1. Топливная смесь «керосин-Депирол» эффективно снимает и удаляет отложения продуктов термического распада топлива с закоксованных форсунок.
- 2. Максимальная эффективность съема кокса находится в пределах концентрации «Депирола» в керосине 10...15% и зависит от различных факторов (состав отложений, температура топливной смеси, время промывки и т.д.).
- 3. В первоначальный момент работы форсунки на топливной смеси «керосин-Депирол» наблюдается прерывистое горение, по мере очистки форсунки горение стабилизируется.
- 4. В связи с тем, что одногорелочный отсек по входным параметрам (давлению, температуре воздуха на входе в отсек, температуре топлива и т.д.) не имитирует условия работы двигателя, а также учитывая, что при концентрации «Депирола» в топливной смеси свыше 5% наблюдается образование смол на выхлопном патрубке отсека, устраняемое последующей работой отсека на чистом керосине, оптимальный состав смеси для проверки на двигателе можно считать 5-15% концентрацию с соответствующим временем промывки с 5-10% 60 мин, с 15%-30 мин.

Библиографический список

Яковлев В.Д., Щеголь-Алимова А.И., Линчевский Ф.В., Лазарев В.А., Г.В. Щербаненко, Н.В. Нестеренко. Способ очистки маслосистемы двигателя внутреннего сгорания. Описание изобретения к авторскому свидетельству № 1674986 А1. Бюлл. №33, 07.09.1991.

- 2. Лубков Н.В., Спиридонов И.Б., Степанянц А.С. Влияние характеристик контроля на показатели надежности систем // Труды МАИ. 2016. № 85. URL: http://trudymai.ru/published.php?ID=67501
- 3. Метечко Л.Б., Тихонов А.И., Сорокин А.Е., Новиков С.В. Влияние экологических нормативов на развитие авиационного двигателестроения // Труды МАИ. 2016. № 85. URL: https://www.mai.ru/published.php?ID=67495
- 4. Schluter J., Schonfeld T., Poinsot T., Kreds W., Hoffmann S. Characterization of confined swirl flows using large eddy simulations // ASME Turbo Expo 2001, V002T02A027-V002T02A027.
- 5. Moses, C., Roets, P. Properties, Characteristics and Combustion Performance of Sasol Fully Synthetic Jet Fuel // ASME Journal of Engineering for Gas Turbines and Power, 2009, vol. 131, no. 4, 041502-041502-17.
- 6. Harrison W.E., Zabarnick S. The OSD Assured Fuels Initiative— Military Fuels Produced from Coal // DoE Clean Coal Conference, Clearwater, FL, June 2007.
- 7. Lieuwen T., McDonell V., Petersen E., Santavicca D. Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability // ASME Journal of Engineering for Gas Turbines and Power, 2008, vol. 130, 011506-011506-12.
- 8. Медведев А.В., Девятков В.В., Хрящиков М.С., Кузнецов В.А. Топливная форсунка камеры сгорания газотурбинного двигателя. Патент на изобретение РФ № 2290565. Опубликовано: 27.12.2006.
- 9. Ваганов В.М., Габитов Ф.Р., Гончаров В.Г., Гумеров Ф.М., Марчуков Е.Ю., Тарасенко В.Г., Федоров С.А. Способ очистки топливного коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива. Патент РФ № 2561367. Опубликовано: 20.02.2004

- 10. Скибин В.А., Яновский Л.С., Иванов В.Ф., Шамбан М.А. Способ очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива и устройство для его осуществления. Патент РФ № 2224126. Опубликовано: 20.02.2004.
- 11. Елисеев Ю.С., Крымов В.В., Малиновский К.А., Попов В.Г. Технология эксплуатации, диагностики и ремонта газотурбинных двигателей. М.: Высшая школа, 2002. 355 с.
- 12. Данильченко В.П., Лукачев С.В., Ковылов Ю.Л. и др. Проектирование авиационных газотурбинных двигателей. Самара: Изд-во СНЦ РАН, 2008. 619 с.
- 13. Lee S., Speight J.G., Loyalka S.K. Handbook of Alternative Fuel Technologies, CRC Press, Boca Raton, FL, 2007, 525 p.
- 14. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, 2010, 537 p.
- 15. Тимофеев Н.И. Конструкция и летная эксплуатация двигателя НК-8-2У. М: Машиностроение, 1978. 118 с.
- 16. Kiesewetter F., Konle M., Sattelmayer T. Analysis of Combustion Induced Vortex Breakdown Driven Flashback in a Premix Burner with Cylindrical Mixing Zone // ASME Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, pp. 929 936.
- 17. Lieuwen T.C., Yang, V. Combustion Instabilities in Gas Turbine Engines // Progress in Astronautics and Aeronautics, AIAA, 2005, vol. 210, pp. 657.
- 18. Маркушин А.Н., Бакланов А.В. Испытательные стенды для исследования процессов и доводки низкоэмиссионных камер сгорания ГТД // Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королева. 2013. № 3 (41). Часть 1. С. 131 138.

- 19. Baklanov A.V., Neumoin S.P. A technique of gaseous fuel and air mixture quality identification behind the swirl burner of gas turbine engine combustion chamber // Russian Aeronautics, 2017, vol. 60, no. 1, pp. 90 96.
- 20. Бакланов А.В., Маркушин А.Н. Оценка влияния конструкции форсунки на полноту сгорания топлива при испытаниях на отсеке // Вестник Казанского государственного технического университета им. А.Н. Туполева. 2015. № 6. С. 101 105.