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Аннотация. Основными параметрами, характеризующими эффективность 

тепловизионных оптико-электронных систем, является функция передачи 

сигнала (SiTF), частотно-контрастная характеристика и шум. В статье 

рассмотрены определение SiTF, и пространственных и временных составляющих 

3-D шума по изображениям, полученным в лабораторных условиях. Были 

синтезированы однородные изображения объекта и фона по полученным 

функциям SiTF и составляющим 3-D шума, затем по этим изображениям 

рассчитаны температурныи  контраст и отношение сигнал-шум (SNR), определена 
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зависимость вероятности обнаружения объекта от SNR и температурного 

контраста. 

Рассмотрена методика оценки влияния температурного контраста на вероятность 

обнаружения объекта, по результатам лабораторных испытании  оптико-

электронных систем, включающая: подготовку исходных данных и получение 

целевых изображении  посредством оптико-электронных систем; обработку 

изображении , расче т функции  SiTF, шума и его составляющих; синтез 

изображении  фона и цели; расче т по изображениям средних значении  

температуры объекта, фона, среднеквадратического отклонения температуры 

объекта и фона, стандартного отклонения шума от объекта и фона; расче т 

температурного контраста и отношения сигнал-шум; расче т вероятности 

обнаружения объекта и построение зависимости вероятности обнаружения от 

температурного контраста. 

Ключевые слова: эквивалентная разность температур, температурный контраст, 

оптический контраст, вероятность обнаружения, функция передачи сигнала, SiTF, 

3-D шум и его составляющие. 
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Abstract. The main parameters characterizing the efficiency of thermal imaging electro-

optical systems are the signal transfer function (SiTF), the frequency-contrast 

characteristic and noise. The article considers the definition of SiTF, and spatial and 

temporal components of 3-D noise from images obtained in laboratory conditions. 

Homogeneous images of the object and the background were synthesized from the 

obtained SiTF functions and 3-D noise components, then the temperature contrast and 

signal-to-noise ratio (SNR) were calculated from these images, and the dependence of 

the probability of detecting an object on SNR and temperature contrast was determined. 

The article considers a method for assessing the influence of temperature contrast 

on the probability of object detection based on the results of laboratory tests of electro-

optical systems, including: preparation of initial data and obtaining target images using 

electro-optical systems; image processing, calculation of SiTF functions, noise and its 

components; synthesis of background and target images; calculation of average values of 

object temperature, background, standard deviation of object temperature and 

background, standard deviation of noise from the object and background; calculation of 

temperature contrast and signal-to-noise ratio; calculation of object detection 

probability and plotting the dependence of detection probability on temperature 

contrast.  

Keywords: equivalent temperature difference, temperature contrast, optical contrast, 

detection probability, signal transmission function, SiTF, 3-D noise and its components. 

 

Введение 

В статье рассмотрены вопросы, связанные с определением эквивалентнои  

разности температур, температурного и оптического контраста в средневолновом 

и длинноволновом инфракрасных диапазонах, а также вероятностью обнаружения 

объекта, функции передачи сигналов SiTF и составляющих 3-D шума. 

Актуальность данного материала обусловлена:  

1. возможностью определения минимального порога температурного 

контраста необходимого для обнаружения сигнала по результатам лабораторных 

испытании  оптико-электронных систем (ОЭС); 
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2. возможностью получения значении  температурного контраста, при 

которых был установлен факт обнаружения (распознавания) объекта наблюдения 

по результатам натурных испытании ; 

3. возможностью синтеза выборки изображении  объектов наблюдения с 

уче том характеристик ОЭС на различных фонах, необходимои  для обучения 

неи ронных сетеи ; 

4.  возможностью расче та среднего значения начального температурного 

контраста по температурнои  сигнатуре объекта и фона, полученных в полевых 

условиях с различных улов визирования (с уче том времени суток и года), 

необходимого для оценки результатов натурных испытании  ОЭС. 

 

Эквивалентная разность температур 

На поверхности физического объекта могут происходить четыре фотонных 

деи ствия: поглощение, отражение, пропускание и излучение [1] 

𝛼(𝜆) + 𝜌(𝜆) +  𝜏(𝜆) = 1, 

где 𝛼(𝜆) – коэффициент поглощения, 𝜌(𝜆) – коэффициент отражения; 𝜏(𝜆) - 

коэффициент пропускания. 

Большинство материалов не пропускают волны средневолновыи  

инфракрасныи  (СВИК) и длинноволновыи  инфракрасныи  (ДВИК) диапазонов, за 

исключением селенид цинка, сапфира, шпинеля и германия. Для непрозрачных 

материалов 𝜏(𝜆) равно 0, следовательно: 

𝛼(𝜆) + 𝜌(𝜆) = 1. 

Из этого равенства видно, что объекты с высокои  отражающеи  способностью 

(цвета) имеют небольшое поглощение и, наоборот, при большом поглощении 

отражение сигнала мало. В инфракрасном диапазоне сигнал от объекта 

формируется за сче т излучения. В соответствии с законом Кирхгофа, когда объект 

находится в тепловом равновесии с окружающеи  средои , коэффициенты 

поглощения 𝛼(𝜆) и излучения 𝜀(𝜆) равны: 

𝛼(𝜆) = 𝜀(𝜆), 

Таким образом, 

𝜀(𝜆) + 𝜌(𝜆) = 1, 
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то есть сильно излучающии  в инфракрасном диапазоне объект имеет низкую 

отражательную способность. 

В инфракрасном диапазоне характеристики поглощения и излучения 

объектов более значимы, чем их характеристики отражения и пропускания. 

Объекты имеют тенденцию поглощать солнечную энергию с последующим 

излучением, но существуют объекты, являющиеся источниками собственного 

излучения. Температура объектов обеспечивает энергию, необходимую для 

излучения фотонов. Два основных положения справедливы для излучения [1]:  

 тело с более высокои  температурои  соответствует большему излучению 

потока; 

 тело с более высокои  температурои  сдвигает спектральное распределение 

потока в сторону более коротких длин волн.  

Эти положения верны независимо от характеристик излучательнои  

способности объекта. Излучательная способность объекта зависит от температуры 

объекта, спектрального распределения и коэффициента излучения: 

𝑀𝑒(𝜆, 𝑇) = 𝜀(𝜆)
𝑐1

𝜆5 (
1

𝑒
𝑐2
𝜆𝑇 − 1

) [
Вт

м2 ∙ мкм
], 

где 𝑐1 = 3,7418 × 108  
Вт∙мкм4

м2
;  𝑐2 = 14388 мкм ∙ К, 

спектральная квантовая светимость: 

𝑀𝑞(𝜆, 𝑇) = 𝜀(𝜆)
𝑐3

𝜆4
(

1

𝑒
𝑐2
𝜆𝑇 − 1

) [
фотон

с ∙ м2 ∙ мкм
], 

где 𝑐3 = 1,88365 × 1027  [
фотон∙мкм3

с− м2
]. 

На рисунке 1 приведена зависимость спектральнои  квантовои  светимости 

абсолютно че рного тела от длины волны и температуры, рассчитанная по формуле 

Планка для абсолютно че рного тела (АЧТ) [2], у которого 𝜀(𝜆) равен 1.  

Данныи  график подтверждает положение о том, что тело с более высокои  

температурои  соответствует большему излучению потока и сдвигает спектральное 

распределение потока в сторону более коротких длин волн. Например, излучение 

АЧТ с температурои  1000 К наблюдается в видимом диапазоне, при температуре 
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300 К излучения АЧТ в видимом диапазоне нет, но наблюдается в СВИК (MWIR) и 

ДВИК (LWIR) диапазонах. 

Следует обратить внимание на сдвиг длины волны максимального излучения 

𝜆𝑚𝑎𝑥 для различных температур, значение которои  определяется законом Вина [1]: 

𝜆𝑚𝑎𝑥 𝑊 =
2897,8

𝑇
 [мкм], 

где температура дана в градусах Кельвина.  

Таким образом, определив перечень объектов наблюдения и зная их среднюю 

температуру можно определить спектральныи  диапазон, в котором должна 

работать разрабатываемая ОЭС. Например, объекты со среднеи  температурои  30℃ 

имеют максимальное излучение на длине волны 9,56 мкм, т.е. ДВИК диапазон. 

Длина волны 4 мкм СВИК диапазона соответствует излучательнои  способности 

объектов с температурои  450℃. 

 

 

Рисунок 1 - Зависимость спектральнои  квантовои  светимости абсолютно че рного тела 
от длины волны и температуры. 

 

Объекты, излучение которых зависит от длины волны, называют 

спектральными излучателями. Значение энергетическои  светимости в заданном 

спектральном диапазоне определяется во формуле [2]: 

𝑀𝑒(𝜆, 𝑇) = ∫ 𝜀(𝜆)
𝑐1

𝜆5
(

1

𝑒
𝑐2
𝜆𝑇 − 1

)

𝜆2

𝜆1

 [
Вт

м2 ∙ К
] ; 

𝜀(𝜆) =
𝑀𝑜𝑏(𝜆)

𝑀𝐵𝐵(𝜆)
, 



7 

где 𝑀𝑜𝑏(𝜆), 𝑀𝐵𝐵(𝜆) – измеренные спектральные энергетические светимости 

объекта и АЧТ при температуре АЧТ равнои  температуре объекта. 

Объект с постоянным коэффициентом излучения 𝜀(𝜆) на всех длинах волн 

называется серым телом. Закон Стефана-Больцмана обеспечивает простые 

расче ты потока, когда желательно знать излучение во все м спектре: 

𝑀𝑒(𝑇) = 𝜀𝜎4𝑇 [
Вт

м2 ∙ К 
], 

где константа Стефана-Больцмана 𝜎 равна 5,67032 × 10−8 Вт

м2∙К4
. Уравнение 

применимо только к черным и серым телам.  

Контраст объекта в инфракрасном диапазоне описывается эквивалентнои  

разностью температур ∆𝑇 [2]: 

𝑇𝑇 =  𝑇𝐵 +  ∆𝑇, 

где 𝑇𝐵, 𝑇𝑇 – температура фона и объекта. 

Величина ∆𝑇 может показаться величинои  характеризующеи  температуру, 

но на самом деле она является радиометрическои  величинои . Разность между 

двумя величинами можно представить рядом Теи лора [2]: 

𝑀𝑒(𝜆, 𝑇𝐵 +  ∆𝑇) −  𝑀𝑒(𝜆, 𝑇𝐵) =  [
𝜕𝑀𝑒(𝜆, 𝑇𝐵)

𝜕𝑇
] ∆𝑇 +  [

𝜕2𝑀𝑒(𝜆, 𝑇𝐵)

𝜕𝑇2
]

∆𝑇2

2
+ ⋯. 

Для небольших значении  ∆𝑇 достаточно учесть первое слагаемое ряда 

Теи лора: 

𝑀𝑒(𝜆, 𝑇𝑇) −  𝑀𝑒(𝜆, 𝑇𝐵) ≈  [
𝜕𝑀𝑒(𝜆, 𝑇𝐵)

𝜕𝑇
] ∆𝑇, 

где 

𝜕𝑀𝑒(𝜆, 𝑇𝐵)

𝜕𝑇
=  𝑀𝑒(𝜆, 𝑇𝐵) [

𝑐2𝑒𝑐2/𝜆𝑇𝐵

𝜆𝑇2(𝑐2𝑒𝑐2/𝜆𝑇𝐵 − 1)
]. 

Следовательно,  

∆𝑇 ≈
∫ [𝑀𝑒(𝜆, 𝑇𝑇) −  𝑀𝑒(𝜆, 𝑇𝐵)]𝑑𝜆

𝜆2

𝜆1

∫
𝜕𝑀𝑒(𝜆, 𝑇𝐵)

𝜕𝑇
𝑑𝜆

𝜆2

𝜆1

. 
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Эквивалентная разность температур ∆𝑇, как правило, используется при 

энергетическом расче те для оценки характеристик ОЭС. На практике вместо ∆𝑇 

используется температурныи  контраст ∆𝑇𝑅𝑆𝑆, которыи  рассчитывается по 

тепловизионным изображениям. 

 

Оптический и температурный контраст 

Оптическии  контраст 𝐶 объекта наблюдения в СВИК и в ДВИК диапазонах 

определяется по формуле [1, 3, 4]: 

𝐶 =
∆𝑇𝑅𝑆𝑆

𝑇𝑇 + 𝑇𝐵
; 

∆𝑇𝑅𝑆𝑆 = √(𝑇𝑇 − 𝑇𝐵)2 + (𝜎𝑇 − 𝜎𝐵)2; 

𝑇 =
∑ ∑ 𝑡𝑚,𝑛𝑚𝑛

𝑀𝑁
; 𝑇𝑇 = 𝑇 или 𝑇𝐵 = 𝑇; 

𝜎 = √∑ ∑ (𝑡𝑚,𝑛 − 𝑇)
2

𝑚𝑛

𝑀𝑁
; 𝜎𝑇 = 𝜎 или 𝜎𝐵 = 𝜎, 

где ∆𝑇𝑅𝑆𝑆 – температурныи  контраст; 𝑇𝑇, 𝑇𝐵 – средние значения температуры 

(°С или К) объекта и фона, вычисленные по значениям пикселеи  (DN); 𝜎𝑇 , 𝜎𝐵 – 

среднеквадратическое отклонение (СКО) температуры объекта и фона; 𝑀, 𝑁 – 

количество строк и столбцов в изображении объекта наблюдения (фона), 𝑡𝑚,𝑛 – 

температурные значения пикселеи . 

Напряжение на выходе пикселя пропорционально количеству электронов в 

потенциальнои  яме пикселя. При известнои  разрядности N аналого-цифрового 

преобразователя количество электронов преобразуется в цифрои  уровень 

сигнала, его, как правило, обозначают 𝐷𝐿 (digital level) или 𝐷𝑁 (digital number). Из 

значении  цифровых уровнеи  сигналов 𝐷𝑁 формируется кадр изображения ОЭС. В 

любои  ОЭС формируется изображение в заданном диапазоне температур: от 𝑇𝑚𝑖𝑛 

до 𝑇𝑚𝑎𝑥. Минимальному значению 𝐷𝐿, равному 0, соответствует 𝑇𝑚𝑖𝑛, а 𝑇𝑚𝑎𝑥 

соответствует максимальному 2𝑁 − 1. 

При расче те ∆𝑇𝑅𝑆𝑆, принимают допущение, о том, что площадь фона равна 

площади объекта, то есть если 𝐻𝑇 , 𝑊𝑇  – это размеры объекта в метрах, то размеры 

фона будут равны [2]:  
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𝐻𝐵 = √2𝐻𝑇;  𝑊𝐵 = √2𝑊𝑇 . 

В случае, если фон равномерныи  выражение для ∆𝑇𝑅𝑆𝑆, принимает вид [2]: 

∆𝑇𝑅𝑆𝑆 = √(𝑇𝑇 − 𝑇𝐵)2 + 𝜎𝑇
2. 

Часто изображения объекта имеют несколько фрагментов с различнои  

температурои  (рисунок 2), для вычисления температуры объекта 𝑇ср и 

температурного контраста ∆𝑇𝑎𝑣𝑒 используют формулы [4]:  

𝑇𝑎𝑣𝑒 =
∑ 𝐴𝑘

𝐾
𝑘=1 𝑇𝑘

∑ 𝐴𝑘
𝐾
𝑘=1

; 

∆𝑇𝑎𝑣𝑒 =  𝑇𝑎𝑣𝑒 −  𝑇𝐵, 

где K, 𝐴𝑘 , 𝑇𝑘 - количество фрагментов изображения, площадь и средняя 

температура k-го фрагмента изображения. При допущении, что 𝜎𝑇 и 𝜎𝐵 равны 

нулю, то ∆𝑇𝑅𝑆𝑆 уменьшается до ∆𝑇𝑎𝑣𝑒. 

 

Рисунок 2 - Разбиение изображения на фрагменты 
 

Площадь 𝐴𝑘 фрагмента изображения – произведение количества пикселеи  в 

фрагменте изображения на площадь пикселя. Средняя температура 𝑇𝑘 фрагмента 

изображения равна 

𝑇𝑘 =
∑ ∑ 𝑡𝑚,𝑛

𝑘
𝑚𝑛

𝑀𝑁
; 

Температурные значения пикселеи  𝑡𝑚,𝑛 и 𝑡𝑚,𝑛
𝑘  определяются по 

аппроксимирующеи  зависимости функции передачи сигнала 𝑆𝑖𝑇𝐹. 
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Определение функции передачи сигнала 

Зависимость значении  пикселеи  DN от значении  температуры есть функция 

передачи сигнала SiTF [1]. В общем случае испытательное оборудование, 

необходимое для определения SiTF состоит из следующих модулеи : абсолютное 

черное тело, зеркальныи  коллиматор, вращающии ся диск с набором мир 

(мишенеи ), компьютер с платои  видеозахвата и программное обеспечение для 

тестирования и контроля. Один из вариантов построения испытательного 

оборудования приведен на рисунке 3. В качестве тест-объекта необходимо 

использовать миру, приведе нную на рисунке 4. Размещение миры и тепловизора 

должны быть таким чтобы белыи  квадрат миры занимал максимально поле 

зрения тепловизора.  

 

Рисунок 3 – Схема размещения испытательного оборудования 

 

 

Рисунок 4 - Мира для измерения SiTF 

 

До проведения работ при необходимости провести юстировку ОЭС и 

отключить все улучшения изображения и режимы усиления ОЭС. 
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В таблице 1 приведены значения температуры АЧТ Tbb и температурного 

контраста ΔT; в таблице 2 приведены характеристики ОЭС, с помощью которои  

получены изображения миры (рисунок 5). 

Таблица 1 

Значения температуры АЧТ 

𝑇𝑏𝑏 , ̊ С 𝛥𝑇𝑏𝑏, ̊ С 𝑇𝑏𝑏, ̊ С 𝛥𝑇𝑏𝑏, ̊ С 

15 -10 22 -3 

16 -9 22,25 -2,75 

17 -8 22,5 -2,5 

18 -7 22,75 -2,25 

19 -6 23 -2 

20 -5 23,25 -1,75 

21 -4 23,5 -1,5 

22 -3 23,75 -1,25 

23 -2 24 -1 

24 -1 24,25 -0,75 

25 (фон) 0 24,5 -0,5 

26 1 24,75 -0,25 

27 2 25 (фон) 0 

28 3 25,25 0,25 

29 4 25,5 0,5 

30 5 25,75 0,75 

31 6 26 1 

32 7 26,25 1,25 

33 8 26,5 1,5 

34 9 26,75 1,75 

35 10 27 2 

  27,25 2,25 

  27,5 2,5 

  27,75 2,75 

  28 3 
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Таблица 2 
 

Характеристики ОЭС 

Характеристика Значение 
Фокусное расстояние, мм 300 

Диаметр входного зрачка, мм 75 

Спектральныи  диапазон, мкм 3 - 5 

Размер активного элемента пикселя, мкм 15 

Угловои  размер пикселя, мрад 0,05 

Размер поля зрения, градус 1,8 х 1,5 

 
 
 
 

 
𝛥𝑇𝑏𝑏 = 0 ̊ С 

  
𝛥𝑇𝑏𝑏 = - 1 ̊ С 𝛥𝑇𝑏𝑏 = 1 ̊ С 

  
𝛥𝑇𝑏𝑏 = - 2 ̊ С 𝛥𝑇𝑏𝑏 = 2 ̊ С 

  
𝛥𝑇𝑏𝑏 = - 3 ̊ С 𝛥𝑇𝑏𝑏 = 3 ̊ С 

 
Рисунок 5 - Изображения миры, полученные посредством ОЭС. 
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На рисунках 6 и 7 приведены функции 𝑆𝑖𝑇𝐹(𝑇), 𝑆𝑖𝑇𝐹(𝛥𝑇) (синие маркеры) 

и аппроксимирующие функции 𝐷𝑁 =  𝑓(𝑇𝑏𝑏), 𝛥𝐷𝑁 =  𝑓(𝛥𝑇𝑏𝑏) (красные 

пунктирные линии).  

В таблицах 3, 4 представлены значения коэффициентов функции  𝐷𝑁 =

 𝑓(𝑇𝑏𝑏), 𝛥𝐷𝑁 =  𝑓(𝛥𝑇𝑏𝑏) и их обратных функции  𝑇𝑏𝑏  =  𝑓(𝐷𝑁),  𝛥𝑇𝑏𝑏  =  𝑓(𝛥𝐷𝑁). 

 

Рисунок 6 – График SiTF для диапазона от 15 ̊С до 35 ̊С  

 

Рисунок 7 – График SiTF для диапазона от 25 ̊С до 28 ̊С 
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Таблица 3 

Значения коэффициентов для температур от 15 ̊С до 35 ̊С 

Функция a b c d 

𝐷𝑁 =  𝑓(𝑇𝑏𝑏) 0,055 -4,596 167,75 -123,65 

𝑇𝑏𝑏  =  𝑓(𝐷𝑁) -1,886× 10-8 1,22× 10-4 -0,2393 163,27 

𝛥𝐷𝑁 =  𝑓(𝛥𝑇𝑏𝑏) 0,055 -0,5127 40,023 0,3959 

𝛥𝑇𝑏𝑏  =  𝑓(𝛥𝐷𝑁) -1,886× 10-8 6,652× 10-6 0,0252 -0,0131 

𝜎 =  𝑓(𝑇𝑏𝑏) -0.0026 -0.009 7.8604 -71.9394 

𝑇𝑏𝑏  =  𝑓(𝜎) -0.0067 1.4725 -1.056× 102 2.465× 103 

Вид полинома 𝑦 = 𝑎𝑥3 +  𝑏𝑥2 + 𝑐𝑥 + 𝑑 

 

Таблица 4 

Значения коэффициентов для температур от 25 ̊С до 28 ̊С 

Функция a b c d 

𝐷𝑁 =  𝑓(𝑇𝑏𝑏) 0.5394 -42.9708 1178.98 -8997.1895 

𝑇𝑏𝑏  =  𝑓(𝐷𝑁) -2. 4249 × 10-7 0.0015 -3.2104 2246.6812 

𝛥𝐷𝑁 =  𝑓(𝛥𝑇𝑏𝑏) 0.5394 -2.5168 41.7909 0.7740 

𝛥𝑇𝑏𝑏  =  𝑓(𝛥𝐷𝑁) -2.4249× 10-7 4.483× 10-5 0.0236 -0.0171 

𝜎 =  𝑓(𝑇𝑏𝑏) -0.0536 1.2153 49.6355 -1088.0358 

𝑇𝑏𝑏  =  𝑓(𝜎) 0.0046 -1.1622 97.1317 -2678.1249 

Вид полинома 𝑦 = 𝑎𝑥3 +  𝑏𝑥2 + 𝑐𝑥 + 𝑑 

 

 

Вероятность обнаружения объекта 

Выражение для расче та вероятности обнаружения объекта имеет вид [5, 6, 19, 

20]: 

𝑃𝑑𝑒𝑡(𝑆𝑁𝑅) = √
1

2𝜋
∫ 𝑒−

1
2

(𝑠−3)2

𝑑𝑠
𝑆𝑁𝑅

0

; 

𝑆𝑁𝑅 =
∆𝑇𝑅𝑆𝑆

√𝜎𝑇
2(𝑇𝑇) + 𝜎𝐵

2(𝑇𝐵)
, 
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где 𝑆𝑁𝑅 – отношение сигнал-шум; 𝜎𝑇(𝑇𝑇), 𝜎𝐵(𝑇𝐵) - СКО шума ОЭС, 

соответственно, от объекта наблюдения и фона, рассчитываются по формуле [6]: 

𝜎 (𝑇) = √𝜎𝑡𝑒𝑚𝑝
2 (𝑇) + 𝜎𝑠𝑝𝑎𝑡

2 (𝑇), 

где 𝜎𝑡𝑒𝑚𝑝(𝑇) – СКО временного шум ОЭС; 𝜎𝑠𝑝𝑎𝑡(𝑇) – СКО пространственного 

шума ОЭС. Необходимо отметить, что рассмотренные выше СКО температуры 

объекта 𝜎𝑇 , фона 𝜎𝐵 ни есть 𝜎𝑇(𝑇𝑇), 𝜎𝐵(𝑇𝐵). 

Модель шума, используемая для оценки эффективности разрабатываемои  

ОЭС посредством аналитическои  модели [7] на начальных этапах проектирования 

описана в [8]. Рассмотрим модель шума, которую можно использовать после 

изготовления опытного образца ОЭС при проведении его испытании  в 

лабораторных и полунатурных условиях, также эту модель шума целесообразно 

применять при синтезе изображении  с уче том характеристик даннои  ОЭС для 

заданных внешних условии .  

Для определения функции 𝜎(𝑇) используется модель 3-D шума [9 - 11]. Суть 

даннои  модели в том, что формируется последовательность кадров в виде «куба» 

изображения, размер которого определяется следующими параметрами: H – 

ширина по горизонтали в пикселях, V – высота изображения по вертикали в 

пикселях, K – количество кадров. Затем рассчитывают семь компонентов шума, три 

из которых относятся к временному шуму, три – к пространственному, а один – к 

пространственно-временному: 

𝜎 (𝑇) = √𝜎𝑡𝑣ℎ
2 (𝑇) + 𝜎𝑡𝑣

2 (𝑇) + 𝜎𝑡ℎ
2 (𝑇) + 𝜎𝑡

2(𝑇) + 𝜎𝑣ℎ
2 (𝑇) + 𝜎𝑣

2(𝑇) + 𝜎ℎ
2(𝑇) 

где 𝜎𝑡𝑣(𝑇), 𝜎𝑡ℎ(𝑇), 𝜎𝑡(𝑇) – составляющие временного шума 𝜎𝑡𝑒𝑚𝑝(𝑇); 

𝜎𝑣ℎ(𝑇), 𝜎𝑣(𝑇), 𝜎ℎ(𝑇) – составляющие пространственного шума 𝜎𝑠𝑝𝑎𝑡(𝑇); 𝜎𝑡𝑣ℎ(𝑇) – 

пространственно-временнои  шум, его относят или к временному шуму 

𝜎𝑡𝑒𝑚𝑝(𝑇) или рассматривают отдельно [4]: 

𝜎 (𝑇) == 𝜎𝑡𝑣ℎ(𝑇)√1 +
𝜎𝑡𝑣

2 (𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎𝑡ℎ

2 (𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎𝑡

2(𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎𝑣ℎ

2 (𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎𝑣

2(𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎ℎ

2(𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

, 

при допущении, что временнои  шум небольшои  выражение для 𝜎 (𝑇) 

принимает вид: 
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𝜎 (𝑇) = 𝜎𝑡𝑣ℎ(𝑇)√1 +
𝜎𝑣ℎ

2 (𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎𝑣

2(𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

+
𝜎ℎ

2(𝑇)

𝜎𝑡𝑣ℎ
2 (𝑇)

. 

 

Описание компонентов шума приведены в таблице 5 [4].  

Таблица 5 

Описание компонентов 3-D шума 

Компонент Описание Источник 

𝜎𝑡𝑣ℎ Случаи ныи  пространственно-
временнои  шум 

пространственно-
временнои  шум пикселеи  
(временнои  шум) 

𝜎𝑡ℎ Временнои  шум столбцов 
(вертикальные линии, которые 
изменяются от кадра к кадру, 
изменение среднеи  яркости столбца 
со временем) 

Считывание электронов 

(временнои  шум) 

𝜎𝑡𝑣 Временнои  шум строк 
(горизонтальные линии, которые 
изменяются от кадра к кадру; 
изменение среднеи  яркости строки 
со временем) 

Считывание электронов 

(временнои  шум) 

𝜎𝑣ℎ  Случаи ныи  пространственныи  шум 
(не изменяется от кадра к кадру) 

Неоднородность пикселеи  

(пространственныи  шум) 

𝜎ℎ  Фиксированныи  шум столбцов 
(вертикальные линии; изменение 
среднеи  яркости столбцов 
постоянное по времени) 

Считывание электронов. 
Неоднородность столбцов 

(пространственныи  шум) 

𝜎𝑣 Фиксированныи  шум строк 
(горизонтальные линии; изменение 
среднеи  яркости строки постоянное 
по времени) 

Считывание электронов. 
Неоднородность строк 

(пространственныи  шум) 

𝜎𝑡 Межкадровыи  шум (изменение 
яркости от кадра к кадру) 

Обработка кадров 

(временнои  шум) 

 

Расче т шума 𝜎 (𝑇) осуществляется по последовательности кадров, 

полученных для вычисления функции передачи сигнала 𝑆𝑖𝑇𝐹(𝑇). На рисунке 8 

приведены графики составляющих 3-D шума, функции 𝜎 (𝑇) и полинома 𝜎 =

 𝑓(𝑇𝑏𝑏), в таблицах 3, 4 - значения коэффициентов полиномов аппроксимации 

функции  𝜎 =  𝑓(𝑇𝑏𝑏) и 𝑇𝑏𝑏  =  𝑓(𝜎). 
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С использованием полученных функции  (таблицы 3, 4) были синтезированы 

однородные изображения объектов и фона (рисунок 9). Температура фона 25 ℃, 

температура объектов от 25,01 ℃ до 26 ℃ с шагом 0,02 ℃. На данном рисунке 

отмечено положение объекта с температурным контрастом ∆𝑇𝑅𝑆𝑆 равным 0,43 ℃. 

Характеристическии  размер объекта наблюдения равен 3,1 м. Под 

характеристическим размером понимается корень квадратныи  площади объекта. 

 

 

Рисунок 8 – Графики составляющих 3-D шума для диапазона от 25 ̊С до 35 ̊С 

 

 

Рисунок 9 – Синтезированные изображения объектов и фона 
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На рисунке 10 представлена функция вероятности обнаружения объекта на 

дальности 7000 м для температуры фона 25 ℃. 

В таблице 6 значения температурного контраста при вероятности равнои  0,8 

для различных значении  температуры фона 𝑇𝐵. Температура объекта изменялась 

от 𝑇𝐵 + 0,01 ℃ до 𝑇𝐵 + 1 ℃ с шагом 0,02 ℃. Таким образом, ОЭС, характеристики 

которои  приведены в таблице 2, в температурном диапазоне от 25 ℃ до 35 ℃ 

обеспечивает обнаружение объекта наблюдения при среднем значении 

температурного контраста 0,46 ℃. 

 

 

Рисунок 10 – Вероятность обнаружения 𝑃𝑑𝑒𝑡(𝑆𝑁𝑅), 𝑃𝑑𝑒𝑡(∆𝑇𝑅𝑆𝑆) объекта наблюдения на 
дальности 7000 м 
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Таблица 6 

Значения теплового контраста при вероятности равнои  0,8 

𝑇𝐵 , ℃ 25 26 27 28 29 30 31 32 33 34 35 

∆𝑇𝑅𝑆𝑆, ℃ 0,43 0,45 0,46 0,46 0,47 0,47 0,47 0,47 0,47 0,46 0,46 

𝑀∆𝑇𝑟𝑠𝑠
, ℃ 0,46 

 

В общем виде методика оценки влияния температурного контраста на 

вероятность обнаружения объекта по результатам лабораторных испытании  ОЭС 

состоит из следующих этапов: 

1. Подготовка исходных данных и получение изображении  миры посредством 

ОЭС; 

2. Обработка изображении , определение функции  𝑆𝑖𝑇𝐹(𝑇𝑏𝑏), 𝑆𝑖𝑇𝐹(𝛥𝑇𝑏𝑏) [12 – 

14] и аппроксимирующих функции  𝐷𝑁 =  𝑓(𝑇𝑏𝑏), 𝛥𝐷𝑁 =  𝑓(𝛥𝑇𝑏𝑏), 𝑇𝑏𝑏  =

 𝑓(𝐷𝑁), 𝛥𝑇𝑏𝑏  =  𝑓(𝛥𝐷𝑁);  

3. Расче т по изображениям шума 𝜎 (𝑇) и его составляющих, определение 

аппроксимирующих функции  𝜎 =  𝑓(𝑇𝑏𝑏), 𝑇𝑏𝑏  =  𝑓(𝜎) для шума и его 

составляющих 𝜎𝑡𝑣 =  𝑓(𝑇𝑏𝑏),  𝜎𝑡ℎ =  𝑓(𝑇𝑏𝑏),  𝜎𝑡 =  𝑓(𝑇𝑏𝑏), 𝜎𝑣ℎ =  𝑓(𝑇𝑏𝑏),  𝜎𝑣 =  𝑓(𝑇𝑏𝑏), 

𝜎ℎ =  𝑓(𝑇𝑏𝑏), 𝜎𝑡𝑣ℎ(𝑇) =  𝑓(𝑇𝑏𝑏). 

4.  Синтез изображении  фона и цели по формульным зависимостям, 

полученным в п.п. 2 и 3 даннои  методики. 

5. Расче т по полученным синтезированным изображениям: 

- средних значении  температуры объекта 𝑇𝑇, фона 𝑇𝐵, СКО температуры 

объекта 𝜎𝑇 и фона 𝜎𝐵; 

- СКО шума от объекта 𝜎𝑇(𝑇𝑇), и фона 𝜎𝐵(𝑇𝐵); 

6.  Расче т температурного контраста ∆𝑇𝑅𝑆𝑆 и отношения сигнал - шум 𝑆𝑁𝑅; 

7.  Расче т вероятности обнаружения объекта 𝑃𝑑𝑒𝑡(𝑆𝑁𝑅) и построение 

зависимости вероятности обнаружения от температурного контраста 𝑃𝑑𝑒𝑡(∆𝑇𝑅𝑆𝑆). 

На рисунках 11 и 12 показаны примеры изображении  объекта, полученных в 

результате расчетов температурнои  сигнатуры, в том числе для разных фонов, 

создание базы данных изображении , синтезированных в различных условиях, 

может стать основои  для обучения неи ронных сетеи  [15 - 18].  
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a) б) 

 
 

в) г) 
 

Рисунок 11 – Предварительные сигнатуры (а, б); температурная сигнатура, полученная в 
результате расче та (в); синтезированное изображение ОЭС (г) БТР-82А 

 
 

 
а) однородныи  фон б) синтезированныи  фон в) естественныи  фон и   

синтезированныи  объект 
 

Рисунок 12 - Примеры изображении  с различными описаниями фона 

 

Заключение 

Данная методика позволяет определить необходимыи  минимальныи  порог 

температурного контраста для обнаружения сигнала по результатам лабораторных 

испытании  ОЭС. При наличии необработанных («сырых») изображении , 

полученных при проведении натурных испытании  ОЭС, можно получить значения 

температурного контраста, при которых был установлен факт обнаружения 

(распознавания) объекта наблюдения. При известнои  температурнои  сигнатуре 

объекта и фона, полученнои  в полевых условиях с различных улов визирования (с 

уче том времени суток и года) можно получить среднее значение начального 

температурного контраста, которое необходимо для оценки результатов натурных 
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испытании  ОЭС. Кроме того, зная температурную сигнатуру объекта наблюдения, 

можно синтезировать выборку изображении  в различных внешних условиях для 

обучения неи ронных сетеи , с уче том характеристик оптико-электронных систем, 

на разнообразных фонах. 
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