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Аннотация. Современные цифровые модели, представляющие собой системы 

математических и компьютерных моделей, описывающих структуру, 

функциональность и поведение разрабатываемого или эксплуатируемого 

изделия, используются на различных стадиях жизненного цикла воздушного 

судна. Одной из важных задач проектирования воздушного судна является 

разработка системы автоматического регулирования давления в салоне. Для 

решения этой задачи в настоящей работе представлена цифровая модель 

разгерметизации в виде системы, состоящей из CAD (геометрической) модели 

фюзеляжа, численной модели течения воздуха в салоне и за его пределами, с 

учетом работы системы кондиционирования воздуха (СКВ), выполненной на 

основе метода контрольных объемов, и математической модели расхода воздуха 

в области утечки. С использованием разработанной цифровой модели проведено 

моделирование различных сценариев отказов и нарушений работы систем. 

Представлены результаты апробации методики на примере моделирования 

https://trudymai.ru/publications.php?ID=186893
https://www.elibrary.ru/BOKNEU
mailto:a.fevralskih@gmail.com
https://trudymai.ru/publications.php?ID=186893
https://orcid.org/0000-0002-5959-7994


2 
 

режима истечения со снижением по профилю экстренного снижения при высоте в 

кабине 9,8 тыс. фт. с функционирующей системой кондиционирования воздуха. По 

результатам моделирования построена зависимость абсолютного давления в 

отсеке электронного оборудования от времени после возникновения отказа, 

также приведена кривая забортного давления. Указаны возможности применения 

модели в решении задач проектирования. 

Ключевые слова: цифровое моделирование, воздушное судно, разгерметизация, 

вычислительная динамика жидкости. 
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Abstract. Modern digital models are systems of mathematical and computer models 

describing the structure, functionality and behavior of a product under development or 

in operation. Digital models can be used at various stages of the aircraft life cycle for 

determination of layout and operation characteristics. Digital modeling technologies are 

most widely used at the design, testing and operation stages of aircraft. Digital modeling 

technologies are used to describe the interconnectedness of the operation of various 

systems and physical processes accompanying the movement of an aircraft. One of the 

important tasks of aircraft design is the development of an automatic cabin pressure 

control system. To solve this problem, this paper presents a digital depressurization 

model in the form of a system of a geometric fuselage model, a computer model of 

numerical simulation of air flow in the cabin and outside it, taking into account the 

operation of the air conditioning system, performed based on the control volume 

method, and a mathematical model of air flow in the leak area. The numerical 

aerodynamics simulation module solves the Reynolds-averaged Navier-Stokes equations 
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for the case of viscous compressible flow, closed by the SST turbulence model. The 

integration of the developed components of the digital model is performed using scripts 

in the Scheme language. Using the developed digital model, modeling of various failure 

scenarios and system malfunctions was carried out. The results of testing the 

methodology are presented using the example of modeling the outflow mode with a 

descent along the emergency descent profile at an altitude in the cabin of 9.8 thousand 

feet with a functioning air conditioning system. Based on the modeling results, the 

dependence of the absolute pressure in the avionics compartment on the time after the 

failure occurred was constructed, and the outside pressure curve is shown. The 

possibilities of using the developed digital model in solving of aircraft design problems 

are presented. 

Keywords: digital simulation, aircraft, depressurization, computational fluid dynamics. 

 

Введение 

Развитию методов проектирования объектов авиации с использованием 

технологий компьютерного моделирования в последнее время уделяется 

широкое внимание, поскольку внедрение таких методов в жизненный цикл 

воздушных судов позволяет существенно снизить затраты на решение отдельных 

задач проектирования, а также сократить продолжительность проектных 

процедур, за счет уменьшения объемов стендовых испытаний. Задачи 

моделирования внешней аэродинамики пассажирского самолета с 

использованием CFD-технологий ранее выполнялось в работах [1; 2; 3; 4; 5]. 

Примеры работ связанного моделирования внешней и внутренней аэродинамики 

самолета с учетом работы системы кондиционирования в открытом доступе  

Математическая модель разгерметизации проточного канала на основе 

расчета баланса давлений в гермосистеме представлена в работе [6]. В работах [7] 

и [8] приведены результаты разработки математических моделей 

разгерметизации летательного аппарата на основе аналитических моделей. 

Детальное моделирование внешней и внутренней аэродинамики самолета в этих 

работах также не выполнялось. 
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 В работах [9;10;11;12] представлены математические модели для расчета 

процесса разгерметизации, основанные на применении фундаментальных 

газодинамических законов, позволяющих учесть время, давление в кабине и 

расход газа в зависимости от высоты, объема кабины и площади протечки. 

Результаты испытаний самолета T-38 в условиях разгерметизации в виде 

зависимостей высоты в кабине от времени представлены в работе [13]. В работах 

[14; 15] представлены результаты численного моделирования внезапной 

разгерметизации кабины воздушного судна, однако моделируется только малая 

часть объема внутреннего пространства салона.  

В работе [16] представлены примеры разработки логико-математических 

моделей человеческих ошибок управления, на основе Байесовской сети и 

нечеткой логики, связанных с разгерметизацией. Общим ограничением 

указанных работ является недостаточно подробное воспроизведение структуры 

течений, сопровождающих процесс разгерметизации, которое влияет на качество 

проектных решений в части определения размера отверстия утечки, 

алгоритмизации системы управления и другие факторы. 

В настоящей работе предлагается метод расчета разгерметизации кабины 

воздушного судна, основанный на применении цифрового моделирования и 

позволяющий детально учесть геометрию салона, структуру течения, влияние 

системы кондиционирования воздуха, работу системы автоматического 

регулирования давления. С учетом этих факторов, предлагаемый подход к расчету 

разгерметизации представляется более достоверным, а его применение в 

решении задач проектирования позволит повысить качество проектных решений. 

 

Структура цифровой модели 

Цифровая модель разгерметизации включает геометрическую модель 

отсеков в гермокабине, компьютерную модель области течения, реализованную 

на основе метода контрольных объемов, а также математическую модель системы 

автоматического регулирования давления.  
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Схема геометрической модели расположения отсеков гермокабины 

представлена на рисунке 1, наименования, принятые для примера в рисунке, 

приведены в таблице 1. 

 

 
 

Рисунок 1 – Расположение отсеков в гермокабине.  
 
 

Таблица 1 

Перечень отсеков в гермокабине 

№ Отсека Наименование Смежные отсеки 

1 Пассажирский салон 12; 10; 9; 8; 7; 5 

2 Кабина экипажа 3 

3 Пространство под кабиной экипажа 1; 4 

4 Отсек электронного оборудования 3; 5 

5 Пространство вокруг переднего БГО 1; 4; 7; 6 

6 Передний БГО 5 

7 Отсек агрегатов 1; 5; 8 

8 Пространство над центропланом 1; 7; 9 

9 Отсек электронного оборудования 1; 5; 8 

10 Пространство вокруг заднего БГО 1; 11; 12; 9 

11 Задний БГО 10 

12 Отсек сантехнического оборудования 1; 10 

 

Схема цифровой модели приведена на рисунке 2. Геометрическая (CAD) 

модель отсеков и технические характеристики эксплуатации самолета являются 

основными источниками входных данных цифровой модели. Из CAD-модели в 

математическую модель системы регулировки течения и в численную 

компьютерную модель аэродинамики передаются геометрические сведения об 

объемах гермокабины и площадях отверстий утечки. В математической модели в 

первом приближении определяются граничные и начальные условия для 

компьютерного численного моделирования аэродинамики. По результатам 
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численного моделирования в исходной математической модели могут быть 

скорректированы исходные данные по числу Маха истечения, давлению в 

гермокабине и коэффициенту сопротивления, закладываемым в аналитическом 

расчете, а в геометрическую модель передаются рекомендации по изменению 

отверстий площадей утечки для подбора термодинамических режимов истечения, 

удовлетворяющих требованиям норм летной годности самолетов транспортной 

категории. Математическая модель реализована в среде MATLAB R2023b, 

численное моделирование выполнено с использованием пакета программ ANSYS 

Fluent 19R3. Для автоматизированного обмена данными написаны скрипты на 

языке Scheme. 

 

 
 

Рисунок 2 – Схема цифровой модели разгерметизации. 
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Основные положения математической модели системы автоматического 

регулирования давления 

Масса воздуха в гермокабине определяется по формуле (1) 

M =
P_cab ∙ 𝑉

R ∙ 𝑡
 

(1) 

где P_cab – давление воздуха в ГК [Па]; 

𝑉 – объем воздуха в ГК [м3]; 

R = 287,3 
Дж

кг∙К
  – газовая постоянная для воздуха$ 

𝑡 – температура воздуха в салоне (20 °С). 

Изменение массы воздуха в ГК вычисляется по формуле (2) 

𝑑M

𝑑𝑡
= G_cab + G_out 

(2) 

где G_cab – расход воздуха, поступающий в ГК от СКВ [кг/с]; 

G_out– расход воздуха, истекающего из ГК в следствие утечки [кг/с]; 

Расход воздуха, истекающего в следствие утечки, зависит от соотношения 

забортного давления к кабинному, если соотношение давлений 
𝑃_𝑜𝑢𝑡

𝑃_𝑐𝑎𝑏
≤ 0,528, 

тогда режим истечения закритический, и расчет утечки выполняется по формуле 

(3). 

𝐺𝑜𝑢𝑡 = −𝐶𝑑 ∙ 𝐹 ∙ 𝑃_𝑐𝑎𝑏 ∙ √
𝑘

𝑅 ∙ 𝑇
∙ (

2

𝑘 + 1
)

𝑘+1
𝑘∙(𝑘−1)

 

(3) 

где 𝐶𝑑  – коэффициент истечения, который лежит в диапазоне от 0,6…0,9.  

𝐹 – эффективная площадь утечки, образовавшейся по причине отказа или 

нарушения герметичности; 

k – показатель адиабаты воздуха. 

В случае, если соотношение 
𝑃_𝑜𝑢𝑡

𝑃_𝑐𝑎𝑏
> 0.528, тогда истечение докритическое и 

вычисляется по соотношению (4). 

𝐺_𝑜𝑢𝑡 = −𝐶𝑑 ∙ 𝐹 ∙ 𝑃_𝑐𝑎𝑏 ∙ √
𝑘

𝑅 ∙ 𝑇
∙ √2 ∙ (

𝑃_𝑜𝑢𝑡

𝑃_𝑐𝑎𝑏
)

2
𝑘
∙ (1 − (

𝑃_𝑜𝑢𝑡

𝑃_𝑐𝑎𝑏
)

𝑘−1
𝑘

) 

(4) 
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Основные допущения математического моделирования: 

 принимается, что площадь утечки образуется мгновенно; 

 профиль снижения воздушного судна принимается как линейный с 

фиксированной вертикальной скоростью. 

Стоит отметить, что в действительности скорость раскрытия поверхности 

утечки является конечной и сравнимой с характерной скоростью изменения 

среднего давления в гермокабине. Однако, для исследования влияния скорости 

раскрытия отверстия утечки на скорость изменения давления в гермокабине и 

соответствующее снижение воздушного судна необходимо усовершенствование 

цифровой модели в части компьютерного численного моделирования. 

Результаты расчетов с использованием цифровой модели в представленной в 

данной работе конфигурации содержат округление в «безопасную» сторону. 

 

Численное моделирование аэродинамического течения 

Нестационарное численное моделирование движения сжимаемого воздуха в 

расчетной области основано на применении метода конечных объемов к 

усредненным по Рейнольдсу уравнениям Навье-Стокса (URANS). Данный подход 

для определения аэродинамических характеристик течения вблизи поверхности 

воздушного судна был ранее апробирован одним из авторов в процессе 

моделирования внешней аэродинамики различных типов летательных аппаратов 

[17; 18; 19; 20]. Поле течения моделируется путем решения уравнений сохранения 

массы, количества движения и энергии. Уравнение сохранения массы для 

сжимаемого потока, может быть записано в виде (5). 

𝜕ρ𝑎

𝜕𝑡
+ ∇⃗⃗ ∙ (ρ𝑎𝑣𝑎⃗⃗⃗⃗ ) = 0 

(5) 

где ρ𝑎 – плотность; 

𝑣𝑎⃗⃗⃗⃗  - вектор скорости.  

Нижний индекс a относится к воздушной смеси. Это уравнение также 

известно, как уравнение неразрывности. 

Для жидкости второй закон Ньютона гласит, что полная сила, действующая 

на частицу жидкости равна скорости изменения ее момента количества движения 
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во времени. Это можно записать в трехмерной форме с помощью набора трех 

нелинейных уравнений, показанных ниже в векторной форме (6). 

𝜕ρ𝑎𝑣𝑎⃗⃗⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ∙ (ρ𝑎𝑣𝑎⃗⃗⃗⃗ 𝑣𝑎⃗⃗⃗⃗ ) = ∇⃗⃗ ∙ 𝜎𝑖𝑗 + ρ𝑎g⃗  

(6) 

(Где 𝜎𝑖𝑗  – тензор касательных напряжений, который записывается в форме 

(7)-(8). 

𝜎𝑖𝑗 = −𝛿𝑖𝑗p𝑎 + 𝜇𝑎 [𝛿𝑗𝑘∇𝑘𝑣
𝑖 + 𝛿𝑖𝑘∇𝑘𝑣

𝑗 −
2

3
𝛿𝑖𝑗∇𝑘𝑣

𝑘] = −𝛿𝑖𝑗p𝑎 + 𝜏𝑖𝑗  
(7) 

𝜏𝑖𝑗 = 𝜇𝑎 [𝛿𝑗𝑘∇𝑘𝑣
𝑖 + 𝛿𝑖𝑘∇𝑘𝑣

𝑗 −
2

3
𝛿𝑖𝑗∇𝑘𝑣

𝑘] 
(8) 

 

Где 𝜏 – тензор вязкости; 

p – статическое давление; 

𝜇 – динамическая вязкость. 

Третий физический принцип касается уравнения сохранения энергии и 

записывается в виде уравнения (9). 

∂ρaEa

∂t
+ ∇⃗⃗ (ρava⃗⃗  ⃗Ha) = ∇⃗⃗ ∙ (λa(∇⃗⃗ Ta) + viτ

ij) + ρag⃗ ∙ va⃗⃗  ⃗ 
(9) 

где E – полная внутренняя энергия системы; 

H – энтальпия; 

λ – коэффициент теплопроводности среды, который также, как и 

динамическая вязкость зависит от температуры и задается в виде константы.  

Система из восьми уравнений течения жидкости с девятью неизвестными 

(ρa, pa, Ta, Ha, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝜇𝑎, λa), описывает установившееся ламинарное (вязкое, 

нетурбулентное) течение. 

Уравнение, необходимое для замыкания системы, - это уравнение состояния 

идеального газа (10). 

pa = ρaRaTa (10) 

 

Сеточная модель области газодинамического течения содержит около 20 

млн полиэдрических контрольных объемов (рисунок 3). 
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Рисунок 3 – Вид сечения сеточной модели области газодинамического течения. 

 

Входными границами в модели являются распределенные по длине салона 

и кабине экипажа грани, через которые подается расход воздуха от СКВ. На входах 

задается массовый расход воздуха. На выходных границах задаются граничные 

условия типа Pressure-Outlet, избыточное давление 0 Па, температура за выходной 

границей задается в соответствии со стандартной моделью атмосферы. Cхема 

дискретизации по давлению Coupled, для остальных членов уравнения 

Навье-Стокса и энергии применяются схемы дискретизации первого порядка. Шаг 

по времени задан равным 0,015 с, на каждом шаге выполняется по 5 расчетных 

итерации. Для обеспечения нормальной сходимости и устойчивости решения на 

первых 10 шагах по времени выполняется по 30 расчетных итераций. 

Для выполнения нестационарного расчета задается опорное давление, 

соответствующее забортному давлению при полете на высоте 40000 фт. Далее 

выполняется гибридная инициализация и с помощью инструмента Patch во всех 

расчетных областях принудительно назначается избыточное давление 60 кПа. 

В ходе расчета отслеживается значение абсолютного давления в отсеке 

электронного оборудования, и как только абсолютное давление в этой расчетной 

области достигает 70 кПа (что соответствует высоте в кабине, при которой 

срабатывает сигнализация о достижении предельной высоты в кабине), расчет 

приостанавливается, выставляется количество шагов по времени 1000 (что 

соответствует времени реакции пилота 15 с) и вновь запускается. По истечении 

времени реакции расчет вновь приостанавливается и путем изменения опорного 

давления имитируется снижение ВС. 
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Результаты и обсуждения 

Апробация методики расчета с использованием разработанной цифровой 

модели выполнена на примере моделирования режима истечения со снижением 

по профилю экстренного снижения при высоте в кабине 9,8 тыс. фт. с 

функционирующей системой кондиционирования воздуха. Результаты 

моделирования в виде зависимостей высоты и расхода от времени, а также 

функции аварийной сигнализации показаны на рисунке 4. 

 

 
 

Рисунок 4 – Результаты расчетов по разработанной математической модели в виде 
зависимостей от времени высоты в кабине, режима работы аварийной сигнализации и расхода 

воздуха в области утечки. 
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Далее, с использованием результатов математического моделирования, 

выполнено численное моделирование аэродинамики по следующему сценарию 

(рисунок 5):  

- значение высоты в кабине, при которой осуществляется индикация 

авариной высоты в кабине достигается за 6 с; 

- спустя 15 с начинается снижение ВС, на момент начала снижения высота в 

кабине достигает 13800 фт; 

- в ходе выполнения снижения высота в кабине превышает 25000 фт в 

течение 56 с, максимальное значение высоты в кабине достигает 26630 фт в 

момент времени 125 с от начала расчета; 

- спустя 141 с давление в кабине достигает забортного и далее растет в 

соответствии с профилем экстренного снижения.  

По результатам расчетов с использованием разработанной цифровой 

модели построена зависимость абсолютного давления в переднем отсеке БРЭО от 

времени после возникновения отказа, также приведена кривая забортного 

давления (рисунок 5).  

 
 

Рисунок 5 – График изменения давления в отсеке БРЭО от времени при отказе OFV по 
результатам численного моделирования. 
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Заключение 

В статье представлена структура цифровой модели разгерметизации 

кабины воздушного судна, предназначенная для исследования влияния 

газодинамических процессов, сопутствующих разгерметизации, на технические 

характеристики системы автоматического регулирования давления с учетом 

конструктивного выполнения корпуса ЛА. Также модель предназначена для 

использования в процессе принятия оптимальных решений следующих проектно-

конструкторских задач: 

- расчет максимальной площади утечки, способной компенсировать работу 

системы кондиционирования воздуха; 

- расчет максимальной площади утечки, при которой высота в кабине не 

достигает заданного значения в случаях нормальной работы или отказа 

сигнализации; 

- при моделировании отказа выпускного клапана в полностью открытом 

положении и снижение воздушного судна без применения экстренного снижения; 

- при моделировании отказа предохранительных клапанов в полностью 

открытом положении и снижение воздушного судна без применения экстренного 

снижения в комбинации с отказом двух веток системы кондиционирования 

(полностью отсутствует подача воздуха). 

В дальнейших исследованиях планируется выполнить валидацию 

разработанной модели по результатам испытаний, а также провести детальный 

анализ особенностей течения на наиболее критичных участках. 
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