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ABSTRACT 

There has been impending interest in the formation flying with many satellites. Multiple 

satellite system enhances the missions' flexibility with less total mass and cost, and realizes 

some missions that were impossible with a single satellite. At the Institute of Space and 

Astronautical Science (ISAS/JAXA), the plasma and magnetic field observation missions with 

several satellites is under investigation. The mission under consideration is designated as 

SCOPE. The observation area of the SCOPE mission is twenty or thirty earth radii away from 

the center of the earth where the geomagnetic field has interaction with the energetic particles 

from the sun. Therefore its orbit becomes highly elliptic. This paper first discusses the design 

method for spontaneous maintaining the formation geometry on the elliptic orbits. In the 

observation aspect, the formation of plural satellites is requested to constitute a polygon that 

assures the high spatial resolution observation. This study next show the orbital design method 

for the SCOPE mission. The frozen property that maintains high spatial resolution near the 

apogee is found feasible for elliptic orbit. Numerical examples are presented with practical 

illustrations. 

 

NOMENCLATURE 

a  : semi-major axis 

e  : eccentricity 

i  : inclination 

Ω  : right ascension of ascending node 

ω  : argument of perigee 

0t  : perigee passage time 

t  : time 

f  : true anomaly 

M  : mean anomaly 

n  : mean motion 

p  : semi-latus rectum 

µ  : gravity constant 

r  : relative position 
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1. INTRODUCTION 

  In recent years, there has been impending interest in the formation flying with many satellites. 

Multiple satellite system enhances the missions’ flexibility with less total mass and cost, and 

realizes some missions that were impossible with a single satellite, for example, infrared ray or 

laser interferometers, multi point magnetic field observation, large space antenna and so on. At 

the Institute of Space and Astronautical Science (ISAS, JAXA), the plasma and magnetic field 

observation mission with multiple satellites is under consideration. The mission under 

consideration is designated as SCOPE (SCOPE: Scale COoupling in Plasma Environment), the 

successor mission to GEOTAIL. GEOTAIL has observed the plasma surrounding of the earth, 

but it cannot distinguish the time fluctuation with special distribution because it is a single 

satellite mission. To overcome this difficulty, in the SCOPE mission, the observation of many 

points using the plural satellites is required. In the observation aspect, the formation of plural 

satellites is requested to constitute a polygon that assures the high spatial resolution observation. 

The observation area of the SCOPE mission is twenty or thirty earth radii away from the 

center of the earth where the geomagnetic field has interaction with the energetic particles from 

the sun. Therefore its orbit becomes highly elliptic. On such highly elliptic orbit, it is very 

difficult to keep the geometry of formation flying because the relative positions of the satellites 

change largely as time goes on. One possible solution to maintain the satellites’ geometry is 

positive control of relative position with satellites’ fuel. But it is unrealistic because the fuel 

consumptions of satellites probably become large. So the design of the orbit that spontaneously 

keeps the high spatial resolution is necessary. It is known that the three-dimensional formation 

maintenance over the orbit is impossible. But, as the focused area of SCOPE mission is near the 

apogee, the designing the orbit that keep the polygon becomes possible. 

This paper first discusses the design method for spontaneous maintaining the formation 

geometry on the elliptic orbits. The relative position of satellites on the elliptic orbit can be 

expressed with the small differences of the Keplerian parameters. By giving the adequate values 

to these parameters, we can design many interesting orbits. The orbit which can maintains the 

distance between the satellites or two-dimensional geometry can be designed. And this study 

next show the orbital design method for the SCOPE mission. The frozen property that maintains 

high spatial resolution near the apogee is found feasible for elliptic orbit. Numerical examples 

are presented with practical illustrations. 

 

2. RELATIVE POSITION ON ELLIPTIC ORBITS 

  First, the coordinate system is defined as Figure 1.  
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Figure 1: Reference orbit and rotating coordinate 
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The orbital parameters of the reference satellite on the reference orbit are 

0( , , , 0, 0, )a e i tωΩ = = . The rotating frame is considered here; XR axis is the radius vector and 

ZR axis points the angular velocity direction. The position vector of reference satellite is  

 ( ,0,0) ,
1 cos

T

ref

p
r r

e f
= =

+
r . (1) 

Here the satellite whose orbital parameters are 0( , , , , , )a e i tω′ ′ ′ ′ ′ ′Ω  is considered. When this 

satellite is located near the reference satellite, these orbital parameters should be written as 

follows;  

 
0 0 0, , ,

2 ( 0, 1, 2,...)

a a a e e e i i t t t

k k

δ δ δ δ

ω π δω

′ ′ ′ ′= + = + = = +

′ ′Ω + = × + = ± ±
, (2) 

where 

 01, 1, 1, 1, 1a e i tδ δ δ δω δ<< << << << << . (3) 

The position vector of this satellite in the rotating frame can be obtained. 

 

'

( ) ( ') ( ) ( ' ') 0

0

sat Z Z X Z

r

R f R R i R fδ ω
 
 = − Ω +  
 
 

r . (4) 

'f  is true anomaly and 'r  is radius of satellite respectively. 
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0

1ref ref ref
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f f f

r r r
r r a e n t

a e n t
δ δ δ

∂ ∂ ∂
′ = + + +

∂ ∂ ∂
, (5) 

 0

0

1
'

f f f

f f f
f f a e n t

a e n t
δ δ δ

∂ ∂ ∂
= + + +

∂ ∂ ∂
. (6) 

where 

 0

2
0

( ) sin3
, cos , sin

2 1

ref ref ref refr r r rn t t e f
a f e f

a a e t pe

µ∂ ∂ ∂−
= − = − = −

∂ ∂ ∂−
, (7) 

  

2

0

2 2

2

3

0

( ) 13 (2 cos )sin
, ,

2 1

(1 cos )

ref

n t t a ef f e f f

a r e e

f
e f

t p

µ

− −∂ ∂ +
= − =

∂ ∂ −

∂
= − +

∂

. (8) 

Then the relative position of satellite, 

 sat ref= −r r r . (9) 

can be derived as follows;  

 0
0

2

( ) sin3
cos sin

2 1

refr n t t e f
x a e f t e f a

p a e

µ
δ δ δ

 −
= − + + −  − 

. (10) 
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 sin( ')refz r i fδ= −Ω . (12) 

 

3. ONE/TWO-DIMENSIONAL GEOMETRY MAINTANANCE 

  In the previous section, the relative can be represented by orbital parameters. By using these 

results we can design the orbits that can maintain the one/two dimensional geometry. 

 

3.1 Inner Product of Relative Position 

  With the variable conversion of 

 02 3
, , , cos ', sin '

1

e
t i i

e p

δ µ
α β δ γ δω δ δ ε δ= = − = = Ω = Ω

−
, (13) 

the inner product of relative position can derived as following form; 

 
3

02
1

cos sin

T

i j ij ij ij

k k

kref

p p kf q kf
r =

 = + + ∑
r r

, (14) 

where 
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The number of terms is seven (When the reference orbit is circle, the number of terms is five). 
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3.2 Distance Maintenance 

  In general, it is difficult to maintain the distance between the satellites on elliptic orbits. But 

by using eq. (14), we can design such orbits. When the distance between the satellites is 

requested to be kept at D, the following equation should be satisfied;  

 
23

0 2
1

cos sink k

k ref

D
p p kf q kf

r=

 + + = ∑ . (16) 

By substituting eq. (1) to eq. (16), the right-hand term can be transformed.  

 
2 2 2 2 2 2

2 2 2 2

2
1 cos cos2

2 2ref

D e D eD e D
f f

r p p p

 
= + + + 
 

. (17) 

Then, the conditions for distance maintenance become as follows;  

 
2 2 2 2 2

0 1 2 3 1 2 32 2 2

2
1 , , , 0

2 2

e D eD e D
p p p p q q q

p p p

 
= + = = = = = = 
 

. (18) 

As the number of orbital parameter is 5 and the number of condition is 7, the solution does not 

exist. By neglecting the coefficients of the high frequency terms, 3p  and 3q , the approximate 

solution can be obtained. 

 
2 4 2

4 2 4
2 2 2 2 2

2 1
0, ,

7 8 4 3 9 4

3 9 3
1 , 3 , 0

4 4 4

D

p e e e

e e e
e

α β

γ β δ β ε

= = ±
+ ± − +

   
= − + = − + =   
   

. (19) 

This solution exists only under the following condition; 

 
1
(9 33) 0.7366
6

e < + ≈ . (20) 

Figure 2 shows the results of numerical simulation. When the eccentricity is small, the 

distance is almost constant. In this study, the orbit that maintains the distance between the 

satellites is derived analytically, but another approach is described in ref. [3] and [4]. 
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Figure 2: Simulation results of distance maintenance 
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3.3 Similar Geometry Maintenance  

  In order to maintain the two-dimensional similar geometry, the following conditions are 

considered;  

 1 2 1 2 1 20,
T⊥ ⇒ = =r r r r r r . (21) 

The former condition means the maintenance of the angle of relative positions and the latter 

means the equalization of the distance. The following conditions can be derived from eq. (21); 

 

12 12 12

0 1 3

11 22 11 22 11 22

0 0 1 1 3 3

0,

, , ,

p p q

p p p p q q

= = = =

= = =

⋯

⋯

. (22) 

As the number of orbital parameter is 10 and the number of condition is 14, the solution does 

not exist. By neglecting the high frequency term and introducing two free parameters, the 

solutions are obtained. 
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2 2

1 1
cos , sin , 1 sin ,

4

3 sin , 3 cos
4 4

1 1
cos , sin , 1 sin ,

2 2 4 2

3 sin , 3 cos
4 2 4 2

e

e e

e e

e

e e

e e

α σ φ β σ φ γ σ φ

δ σ φ ε φ

π π π
α σ φ β σ φ γ σ φ

π π
δ σ φ ε φ

 
= − = = − + 

 

= ± − = −

      = − + = + = − + +      
      

   
= ± − + = − +   

   

∓

∓

. (23) 

By using these parameters, the two-dimensional geometry can be maintained.  

  The result of numerical simulation is shown in Figure 3. Although the size changes, the letter 

‘E’ form is maintained.  
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Figure 3: Maintenance of “E” formation. 
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4. THREE DIMENSIONAL GEOMETRY MAINTANANCE FOR SCOPE 

  In this section, the three dimensional geometry maintenance methods are represented. 

 

4.1 Relation between the Spatial Resolution and Geometry 

  The objective of SCOPE mission is to investigate the spatial structure of plasma and 

magnetic field. In short, the estimation of spatial derivatives of various observations is required. 

At least four satellites are necessary for estimation of first order spatial derivatives. And the 

accuracy of estimation depends on the geometry. For example, when the four satellites are 

placed on the same plane, the estimation of spatial derivatives is impossible. Therefore, the 

geometry is very important for spatial observation.  

  Here we assume that the value of observation is the function of satellite’s position.  

 ( , , )Y f x y z= . (24) 

When the spatial derivative 

 , ,

T

f f f
f

x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

 (25) 

is uniform on the observation area, the observation value of satellite on ( , , )Tx y z=r  can be 

written as follows;  

 0

TY Y f= + ∇r . (26) 

0Y  is the observation value at the origin. Here we consider one mother satellite on the origin 

and three daughter satellites. The difference of observations between mother and i-th daughter 

satellite is 

 0

T

i i iZ Y Y f= − = ∇r . (27) 

Then, the f∇ can be estimated as follows;  

 

1
3 3

1 1

ˆ T

i i i i

i i

f Z

−

= =

   
∇ =    

   
∑ ∑rr r . (28) 

When the accuracy of observation depends on the distance between the satellites, iZ  can be 

written as follows;  

 0

T

i i i i iZ Y Y f v= − = ∇ +r r , (29) 

where iv  is white noise whose variance is 
2σ . In this case, the covariance of estimation value 

is  

 

1
3

2

2
1

T

i i

i i

P σ

−

=

 
 =
 
 
∑

rr

r
. (30) 

The geometry that minimize the Tr( )J P=  is the good formation for the spatial observation 

and it is shown in the figure 4 (left-hand figure). If the observation differences between daughter 

satellites are available, the best geometry for spatial observation is tetrahedron shown in figure 

4(right-hand figure). 
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Figure 4: Suitable formation for spatial observation 

 

4.2 Right-Angled Baselines 

  Here we consider the formation that constitutes three baselines which cross perpendicularly 

(Figure 4, left). We can easily constitute a baseline in the direction of Z axis by a satellite whose 

inclination is different for a while from the mother satellite. So what we should do is to 

constitute two baselines which cross perpendicularly on the orbital plane of the mother satellite. 

The relative position of the daughter satellite on the orbital plane of the mother satellite is 

dependent on three parameters, ,eδ δω and 0tδ . Here new parameters ,R φ  and k are 
introduced. 

 0 02 3 3
2 sin , 2 cos ,

1

e
R e t R t kR

e p p

δ µ µ
φ δ φ δ δω

−
= = − − =

−
. (31) 

Then the relative position can be written as follows;  

 
cos cos(2 ) cos( / 2)

(3 2 cos )
sin sin(2 ) sin( / 2)

f f
R e f k

f fr

φ π φ π
φ π φ π

 − − −     
= + + +      − − −      

r
. (32) 

As this equation indicates, the parameter R  determines the size of relative motion and both φ  
and k determine the form of relative motion.  

  As described above, it is impossible to maintain three-dimensional formation over the orbit. 

However, it is not necessary to maintain the formation at all the places on orbit in plasma 

physics as the focused area is near the apogee. Then here we design the orbit that maintains the 

three-dimensional geometry at 170 190f≤ ≤ [deg]. The orbital parameters of the reference 

orbit (mother sat.) are shown in Table 1. 

 

Table 1: Orbital parameters of mother satellite 
radius of perigee pr : 3Re 
radius of apogee ar : 30Re 
semi-major axis a : 105237 [km] 
eccentricity e : 0.8182 
inclination i : 0 [deg] 

Re: radius of earth 

 

For the design of the orbit that maintains two right-angled baselines, six parameters should be 

considered ( 1 2 1 2 1, , , ,R R kφ φ  and 2k ). To reduce the number of parameters, the following 

conditions are considered; 
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 1 2 1 2 1 2, ,R R R k k kφ φ φ= = = = = − = . (33) 

These equations are given from the symmetry of two relative position vectors at the apogee. 

Therefore we can design the formation shape by considering only two parameters, φ and k  
because R  determines only the size of formation.  

By calculating φ  and k  that minimize  

 ( )
190

170

: angle between two baselines
2f

J
π

θ θ
°

= °

= −∑ . (34) 

we can obtained desired orbit. φ =82.35 [deg] and 2.294k = −  are obtained under the 

conditions of Table 1.  

The results of numerical simulation are shown in Figure 5 and Figure 6. Figure 5 shows the 

histories of angle and the range of the baselines. The angle is kept at about 90 [deg]. Figure 6 

shows the relative positions of the daughter satellites at f = 170, 180 and 190[deg] and the 
relative motion in inertia system. The right triangle can be maintained in inertia space. 
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Figure 5: Range and angle of the two baselines 
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Figure 6: Maintenance of rectangular triangle 
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4.3 Tetrahedron Formation 

In this section, the tetrahedron formation maintenance is indicated. As described in previous 

section, three satellites on the same orbital plane and one out-of-plane satellite are considered. 

For the maintenance of tetrahedron formation, three satellites should constitute regular triangle 

and out-of-plane satellite should be located above the center of the triangle. Here we assume 

that the orbital parameters of out-of-plane satellite are 

 0' , ' , ' , ' 90[deg], ' 90[deg], ' 0a a e e e i i tδ δ ω δ= = + = Ω = ± = =∓ . (35) 

By considering eq. (33) and (35), the shape of formation can be determined by the four 

parameters, , ,k eφ δ  and iδ . As described in section 4.1, the index of special resolution is 

 

1
3

2
1

Tr
T

i i

i i

P

−

=

  
  =
  
  
∑

rr

r
. (36) 

So, by calculating the parameters that minimize  

 
190

170f

J P
°

= °

= ∑ , (37) 

orbit that maintained the tetrahedron formation is obtained. 

  Figure 7 shows the result of numerical simulation. Although there is some distortion, the 

regular tetrahedron geometry is kept near the apogee.  
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Figure 7: Maintenance of tetrahedron formation 
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5. SUMMARY 

  This paper shows the method of the orbital design for SCOPE mission. SCOPE mission 

requires the highly elliptic orbit for the observation. As is well known, it is impossible to 

maintain the three dimensional formation over the orbit, but the frozen property that maintains 

high spatial resolution near the apogee is found feasible for elliptic orbit. The orbits designed in 

this paper are very effective for many science missions as well as SCOPE mission.  
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