УДК 681.516.7

К анализу динамики парашютной системы со свободно подвешенным грузом

В.М. Чуркин

Рассматривается движение в вертикальной плоскости парашютной системы со свободно подвешенным грузом. При записи уравнений движения парашют, соединительное звено и груз моделируются твердыми телами, соединенными идеальными шарнирами. Составляются упрощенные нелинейные уравнения возмущенного движения системы, в которых учитывается нелинейная зависимость нормальной составляющей аэродинамической силы купола парашюта от угла атаки. Методом гармонической линеаризации находятся выражения, определяющие основные параметры колебательных режимов, возникающих при движении системы. Приводится пример, позволяющий сравнить результаты предлагаемой теории с результатами численного интегрирования исходных уравнений движения системы.

Ключевые слова: парашютная система; свободно подвешенный груз; нормальная составляющая аэродинамической силы; гармоническая линеаризация; устойчивость; автоколебания.

Парашютная система (ПС) со свободно подвешенным грузом – одна из распространенных моделей ПС, которая состоит из трех связанных шарнирами твердых тел: парашюта, соединительного звена (стренги) и груза. В работах [1], [2] описывается вывод уравнений движения и линейный анализ такой ПС. Однако, исследования динамических характеристик более простых моделей ПС (геометрически неизменяемой ПС и ПС с шарнирно подвешенным грузом) показывают, что в случаях, когда ткань купола парашюта имеет малую проницаемость, ПС ведет себя как существенно нелинейная система [2], [3].

Ниже рассматривается движение ПС со свободно подвешенным грузом с учетом нелинейной зависимости нормальной составляющей аэродинамической силы купола от угла

1

атаки, характерной для парашюта, ткань купола которого имеет малую проницаемость. Считается, что движение ПС происходит в вертикальной плоскости при отсутствии ветра. Парашют моделируется осе симметричным твердым телом с центром давления и центром масс, расположенными на оси симметрии. Соединительное звено крепится к парашюту и грузу идеальными шарнирами. Аэродинамические силы, действующие на груз и соединительное звено, пренебрежимо малы.

Запишем уравнения движения ПС, разделив ее на три твердых тела: парашют, соединительное звено и груз [2]. Принимая во внимание, что на парашют действуют нормальная N и касательная T составляющие аэродинамической силы купола, сила тяжести G_{Π} и сила реакции в шарнире F_1 , используя связанную с парашютом систему координат XOY, будем иметь (рис.1)

Рис.1.

$$(m_{\Pi} + \lambda_{11}) \left(\frac{dV_{Ox}}{dt} - V_{Oy} \omega \right) - (\lambda_{26} - m_{\Pi} l_{C}) \omega^{2} = -\frac{\rho s}{2} C_{T} V_{D}^{2} + G_{\Pi} \cos \theta + F_{Ix};$$

$$(m_{\Pi} + \lambda_{11}) \left(\frac{dV_{Oy}}{dt} + V_{Ox} \omega \right) + (\lambda_{26} - m_{\Pi} l_{C}) \frac{d\omega}{dt} = -\frac{\rho s}{2} C_{N} V_{D}^{2} - G_{\Pi} \sin \theta + F_{Iy};$$

$$(J_{\Pi} + \lambda_{66}) \frac{d\omega}{dt} + (\lambda_{26} - m_{\Pi} l_{C}) \left(\frac{dV_{Oy}}{dt} + V_{Ox} \omega \right) = \frac{\rho s}{2} C_{N} V_{D}^{2} l_{D} + G_{\Pi} l_{C} \sin \theta;$$

$$\frac{d\theta}{dt} = \omega.$$
(1)

Здесь V_{Ox} , V_{Oy} – проекции вектора скорости шарнира О на оси системы ХОУ; V_D – скорость центра давления купола парашюта (точки D)

$$V_{\rm D}^2 = V_{\rm Ox}^2 + (V_{\rm Oy} - \omega l_{\rm D})^2;$$

 ω-угловая скорость вращения парашюта; θ – угол тангажа парашюта; C_T, C_N – коэффициенты касательной и нормальной составляющих аэродинамической силы купола

$$C_T = C_T(\alpha); \quad C_N = C_N(\alpha);$$

α – угол атаки купола

$$\alpha = \arctan\left(\frac{V_{Oy} - \omega I_{D}}{V_{Ox}}\right);$$

 G_{Π} – вес парашюта; F_{1x} , F_{1y} – проекции на оси системы ХОҮ силы реакции F_1 в шарнире O; m_{Π} , J_{Π} – масса и момент инерции парашюта относительно оси, проходящей через точку O; λ_{11} , λ_{26} , λ_{66} – коэффициенты присоединенных масс парашюта; l_C , l_D – расстояния от начала O системы ХОҮ до центра тяжести C и центра давления D парашюта; s – характерная площадь парашюта; ρ – плотность воздуха.

На соединительное звено действуют силы реакций F_1 и F_2 в шарнирах O и O_1 и сила тяжести G_1 (рис.2). Уравнения движения соединительного звена составим в проекциях на оси связанной системы $X_1O_1Y_1$

Рис.2.

$$m_{1}\left(\frac{dV_{1x}}{dt} - V_{1y}\omega_{1} + l_{1}\omega_{1}^{2}\right) = G_{1}\cos(\theta + \theta_{1}) - F_{1x}\cos\theta_{1} - F_{1y}\sin\theta_{1} + F_{2x};$$

$$m_{1}\left(\frac{dV_{1y}}{dt} + V_{1x} \omega_{1} - l_{1}\frac{d\omega_{1}}{dt}\right) = -G_{1}\sin(\theta + \theta_{1}) + F_{1x}\sin\theta_{1} - F_{1y}\cos\theta_{1} + F_{2y};$$

$$J_{1}\frac{d\omega_{1}}{dt} - m_{1}l_{1}\left(\frac{dV_{1y}}{dt} + V_{1x}\omega_{1}\right) = G_{1}l_{1}\sin(\theta + \theta_{1}) + 2l_{1}\left(F_{1y}\cos\theta_{1} - F_{1x}\sin\theta_{1}\right);$$

$$\frac{d\theta_{1}}{dt} = \omega_{1} - \omega,$$
(2)

где V_{1x} , V_{1y} – проекции вектора скорости шарнира O_1 на оси системы $X_1O_1Y_1$; ω_1 – абсолютная угловая скорость вращения соединительного звена; θ_1 – угол между осями ОХ и O_1X_1 ; G_1 – вес соединительного звена; F_{2x} , F_{2y} – проекции на оси системы $X_1O_1Y_1$ силы реакции F_2 в шарнире O_1 ; m_1 , J_1 – масса и момент инерции соединительного звена относительно оси, проходящей через точку O_1 ; l_1 – расстояние от центра тяжести соединительного звена до шарниров O и O₁.

При записи уравнений движения груза используем связанную систему координат $X_2O_2Y_2$, начало которой совместим с центром тяжести груза. Полагая, что груз движется под действием силы тяжести G_2 и силы реакции F_2 в шарнире O_1 , находим (рис.3)

Рис.3.

$$\begin{split} m_{\Gamma}(\frac{dV_{2x}}{dt} - V_{2y}\,\omega_2) &= G_{\Gamma}\,\cos(\theta + \theta_1 + \theta_2) - F_{2x}\,\cos\theta_2 - F_{2y}\sin\theta_2;\\ m_{\Gamma}(\frac{dV_{2y}}{dt} + V_{2x}\,\omega_2) &= -G_{\Gamma}\,\sin(\theta + \theta_1 + \theta_2) + F_{2x}\,\sin\theta_2 - F_{2y}\cos\theta_2;\\ J_{\Gamma}\,\frac{d\omega_2}{dt} &= I_{O}(F_{2y}\cos\theta_2 - F_{2x}\sin\theta_2); \end{split}$$

$$\frac{\mathrm{d}\theta_2}{\mathrm{d}t} = \omega_2 - \omega_1. \tag{3}$$

Здесь V_{2x}, V_{2y} – проекции вектора скорости центра тяжести груза на оси системы $X_2O_2Y_2; \omega_2$ – абсолютная угловая скорость вращения груза; θ_2 – угол между осями O_1X_1 и $O_2X_2; G_2$ – вес груза; m_2, J_2 – масса и момент инерции груза относительно оси, проходящей через точку $O_2; l_0$ – расстояние от центра тяжести груза до шарнира O_1 .

Исключая из уравнений (1) – (3) проекции сил реакций в шарнирах О и О₁ и учитывая, что

$$\begin{split} V_{0x} &= V_{1x} \cos \theta_1 - (V_{1y} - 2l_1 \omega_1) \sin \theta_1; \\ V_{0y} &= V_{1y} \sin \theta_1 + (V_{1y} - 2l_1 \omega_1) \cos \theta_1; \\ V_{1x} &= V_{2x} \cos \theta_2 - (V_{2y} - l_0 \omega_2) \sin \theta_2; \\ V_{1y} &= V_{2x} \sin \theta_2 + (V_{2y} - l_0 \omega_2) \cos \theta_2, \end{split}$$

перейдем к более удобной для последующего анализа безразмерной форме записи уравнений движения ПС

$$\begin{split} \mathbf{u}' + \mu_0 \Big[\mathbf{r}' \sin(\theta_1 + \theta_2) - \mathbf{r}^2 \cos(\theta_1 + \theta_2) \Big] - \delta_1 (2\mu_{01} - \mu_{0C}) \big(\mathbf{r}'_1 \sin\theta_2 - \mathbf{r}_1^2 \cos\theta_2 \big) - \\ & - \big(\mathbf{v} - \delta_0 \mu_{01} \mathbf{r}_2 \big) \mathbf{r}_2 = - \frac{C_T}{2k} \mathbf{u}_D^2 \cos(\theta_1 + \theta_2) - \frac{C_N}{2k} \mathbf{u}_D^2 \sin(\theta_1 + \theta_2) + \frac{C_{T0}}{2k} \cos(\theta + \theta_1 + \theta_2) \big; \\ \mathbf{v}' - \delta_1 (2\mu_{01} - \mu_{0C}) \big(\mathbf{r}'_1 \cos\theta_2 + \mathbf{r}_1^2 \sin\theta_2 \big) + \mu_0 \Big[\mathbf{r}' \cos(\theta_1 + \theta_2) + \mathbf{r}^2 \sin(\theta_1 + \theta_2) \Big] - \\ & - \delta_0 \mu_{01} \mathbf{r}'_2 + \mathbf{u}\mathbf{r}_2 = \frac{C_T}{2k} \mathbf{u}_D^2 \sin(\theta_1 + \theta_2) - \frac{C_N}{2k} \mathbf{u}_D^2 \cos(\theta_1 + \theta_2) - \frac{C_{T0}}{2k} \sin(\theta + \theta_1 + \theta_2) \big; \\ \mathbf{r}' + \eta_{01} \big\{ \left[\mathbf{u}' - \big(\mathbf{v} - \delta_0 \mathbf{r}_2 \big) \mathbf{r}_2 \right] \sin(\theta_1 + \theta_2) + \big[\mathbf{v}' + (\mathbf{v} - \delta_0 \mathbf{r}_2) \mathbf{r}_2 \big] \cos(\theta_1 + \theta_2) \big\} - \\ & - 2\delta_1 \eta_{01} (\mathbf{r}'_1 \cos\theta_1 - \mathbf{r}_1^2 \sin\theta_1) = \frac{C_N}{2k} \mathbf{u}_D^2 + \big(1 - \mu - \mu_C \big) \delta_C \frac{C_{T0}}{2i} \sin\theta \big; \\ \eta_{0C} \mathbf{r}'_1 - 2\delta_1 \eta_{01} \big(\mathbf{r}' \cos\theta_1 + \mathbf{r}^2 \sin\theta_1 \big) - \\ & - \delta_1 \eta \big[2 \big(1 - \mu + \mu_1 \big) - \mu_C \big] \big\{ \left[\mathbf{u}' - \big(\mathbf{v} - \delta_0 \mathbf{r}_2 \big) \mathbf{r}_2 \big] \sin\theta_2 + \big(\mathbf{v} - \delta_0 \mathbf{r}'_2 + \mathbf{u}\mathbf{r}_2 \big) \cos\theta_2 \big\} = \\ & = \frac{\delta_1}{i} \bigg[C_N \mathbf{u}_D^2 \cos\theta_1 - C_T \mathbf{u}_D^2 \sin\theta_1 + C_{T0} \bigg(1 - \mu - \frac{\mu_C}{2} \bigg) \sin(\theta + \theta_1 \big) \bigg]; \end{split}$$

$$\begin{split} \eta_{0}r'_{2} - \delta_{0}\eta_{01} \Big[r'\cos(\theta_{1} + \theta_{2}) + r^{2}\sin(\theta_{1} + \theta_{2})\Big] + \\ + \delta_{0}\delta_{1}\eta \Big[2(1 - \mu + \mu_{1}) - \mu_{C}\Big] \Big(r'_{1}\cos\theta_{2} + r_{1}^{2}\sin\theta_{2}\Big) - \delta_{0}\eta(1 - \mu + \mu_{1})(v' + ur_{2}) = \\ &= \frac{\delta_{0}}{2i} \Big[C_{N}u_{D}^{2}\cos(\theta_{1} + \theta_{2}) - C_{T}u_{D}^{2}\sin(\theta_{1} + \theta_{2}) + C_{T0}(1 - \mu)\sin(\theta + \theta_{1} + \theta_{2})\Big]; \\ \theta' = r; \end{split}$$

$$\theta_1' = r_1 - r;$$

 $\theta_2' = r_2 - r_1,$

где

(4)

$$u_{D}^{2} = u_{Dx}^{2} + u_{Dy}^{2}; \quad \alpha = \operatorname{arctg}\left(\frac{u_{Dy}}{u_{Dx}}\right);$$
$$u_{Dx} = u\cos(\theta_{1} + \theta_{2}) - (v - \delta_{0}r_{2})\sin(\theta_{1} + \theta_{2}) + 2\delta_{1}r_{1}\sin\theta_{1};$$
$$u_{Dy} = u\sin(\theta_{1} + \theta_{2}) + (v - \delta_{0}r_{2})\cos(\theta_{1} + \theta_{2}) - 2\delta_{1}r_{1}\cos\theta_{1} - r$$

Здесь введены следующие обозначения

$$\begin{split} & u = \frac{V_{2x}}{V_{00}}; \quad v = \frac{V_{2y}}{V_{00}}; \quad u_{D} = \frac{V_{D}}{V_{00}}; \quad r = \frac{\omega I_{D}}{V_{00}}; \quad r_{1} = \frac{\omega_{1}I_{D}}{V_{00}}; \quad r_{2} = \frac{\omega_{2}I_{D}}{V_{00}}; \quad u' = \frac{du}{dt^{*}}; \\ & t^{*} = \frac{V_{00}t}{I_{D}}; \quad \delta_{0} = \frac{I_{0}}{I_{D}}; \quad \delta_{C} = \frac{I_{C}}{I_{D}}; \quad \delta_{1} = \frac{I_{1}}{I_{D}}; \quad \mu = \frac{m_{\Gamma}}{m}; \quad \mu_{1} = \frac{\mu_{11}}{m}; \quad \mu_{01} = \frac{1+\mu_{1}-\mu}{1+\mu_{1}}; \\ & \mu_{26} = \frac{\lambda_{26}}{I_{D}(m+\mu_{11})}; \quad \mu_{0} = \mu_{26} - \frac{\delta_{C}(1-\mu)}{1+\mu_{1}}; \quad \mu_{C} = \frac{m_{1}}{m}; \quad \eta_{0} = \eta_{z} + \eta \delta_{0}^{2}(1+\mu_{1}-\mu); \\ & \eta_{z} = \frac{J_{\Gamma}}{J_{\Pi}+\lambda_{66}}; \quad \mu_{0C} = \frac{\mu_{C}}{1+\mu_{1}}; \quad \eta = \frac{mI_{D}^{2}}{J_{\Pi}+\lambda_{66}}; \quad \eta_{26} = \frac{\lambda_{26}I_{D}}{J_{\Pi}+\lambda_{66}}; \quad \eta_{01} = \eta_{26} - \eta \delta_{1}(1-\mu); \\ & k = \frac{m+\lambda_{11}}{\rho sI_{D}}; \quad i = \frac{J_{\Pi}+\lambda_{66}}{\rho sI_{B}^{3}}; \quad \eta_{C} = \frac{J_{1}}{J_{\Pi}+\lambda_{66}}; \quad \eta_{0C} = \eta_{C} + 4\eta \delta_{0}^{2}(1+\mu_{1}-\mu-\mu_{C}); \end{split}$$

 V_{00} , C_{T0} – значения скорости шарнира О и коэффициента C_T , соответственно, в установившемся режиме движения ПС.

Составим систему упрощенных нелинейных уравнений возмущенного движения ПС, которые соответствуют уравнениям системы (4). Невозмущенным движением ПС будем считать ее поступательное движение с постоянным углом атаки α_n . Полагая, что в возмущенном движении

$$\begin{split} &u = x_1 + \cos \alpha_n; \ v = x_2 + \sin \alpha_n; \ r = x_3; \ r_1 = x_4; \ r = x_3; \ r_2 = x_5; \ \theta = x_6; \ \theta_1 = x_7; \ \theta_2 = x_8; \\ &\alpha = \alpha_n + x_9; \ C_T = C_{T0}, \end{split}$$

будем иметь

$$b_{12}x'_{2}+g_{12}x_{2}-b_{13}x'_{3}+g_{13}x_{3}-b_{14}x'_{4}+g_{14}x_{4}-b_{15}x'_{5}+g_{15}x_{5}+ x'_{7}+g_{17}x_{7}+x'_{8}+g_{18}x_{8}-x'_{9}-g_{19}x_{9}=0;$$

$$x'_{2}+b_{23}x'_{3}-b_{24}x'_{4}-b_{25}x'_{5}+g_{25}x_{5}+g_{26}x_{6}+g_{29}C_{N}(\alpha_{n}+x_{9})=0;$$

$$b_{32}x'_{2}+x'_{3}-b_{34}x'_{4}+g_{34}x_{4}+g_{35}x_{5}-g_{36}x_{6}-g_{39}C_{N}(\alpha_{n}+x_{9})=0;$$

$$b_{42}x'_{2}+b_{43}x'_{3}-b_{44}x'_{4}-b_{45}x'_{5}+g_{45}x_{5}+g_{46}x_{6}-g_{47}x_{7}+g_{49}C_{N}(\alpha_{n}+x_{9})=0;$$

$$b_{52}x'_{2}+b_{53}x'_{3}-b_{54}x'_{4}-b_{55}x'_{5}+g_{55}x_{5}+g_{56}x_{6}-g_{57}x_{7}-g_{58}x_{8}+g_{59}C_{N}(\alpha_{n}+x_{9})=0;$$

$$x_{3}-x'_{6}=0;$$

$$x_{4}-x_{5}+x'_{8}=0.$$
(5)

Здесь

$$\begin{split} b_{12} &= \cos \alpha_{n} \,; \quad g_{12} = \left(1 + \sin^{2} \alpha_{n} \right) \frac{C_{T0}}{k} \,; \quad b_{13} = b_{12} \,; \quad g_{13} = -\frac{C_{T0}}{k} \,; \quad b_{14} = 2\delta_{1}b_{12} \,; \quad g_{14} = 2\delta_{1}g_{13} \,; \\ b_{15} &= \delta_{0}b_{12} \,; \quad g_{15} = \delta_{0}g_{13} - \sin^{2} \alpha_{n} \,; \quad g_{17} = b_{12}g_{12} \,; \quad g_{18} = g_{17} \,; \quad g_{19} = -b_{12}g_{13} \,; \quad b_{23} = \mu_{0} \,; \\ b_{24} &= \delta_{1}(2\mu_{01} - \mu_{0C}) \,; \quad b_{25} = \delta_{0}\mu_{01} \,; \quad g_{25} = b_{12} \,; \quad g_{26} = -\frac{1}{2}g_{13} \,; \quad g_{29} = \frac{1}{2k} \,; \quad b_{32} = \eta_{01} \,; \\ b_{34} &= b_{43} = 2\delta_{1}\eta_{01} \,; \quad g_{35} = \eta_{01}\sin \alpha_{n} \,; \quad g_{36} = \delta_{C}(1 - \mu + \mu_{1}) \frac{C_{T0}}{2i} \,; \quad g_{39} = \frac{1}{2i} \,; \\ b_{42} &= \delta_{1}\eta[2(1 - \mu + \mu_{1}) - \mu_{C}] \,; \quad b_{44} = \eta_{0C} \,; \quad b_{45} = \delta_{0}b_{42} \,; \quad g_{45} = b_{42}\cos \alpha_{n} \,; \\ g_{46} &= \delta_{1}\left(1 - \mu - \frac{\mu_{C}}{2}\right)\frac{C_{T0}}{i} \,; \quad g_{47} = \delta_{1}\left(\mu + \frac{\mu_{C}}{2}\right)\frac{C_{T0}}{i} \,; \quad g_{49} = \frac{\delta_{1}}{i} \,; \quad b_{52} = \delta_{0}\eta(1 - \mu + \mu_{1}); \\ b_{53} &= \delta_{0}\eta_{01} \,; \quad b_{54} = b_{45} \,; \quad b_{55} = b_{52}b_{12} \,; \quad g_{55} = \eta\delta_{0}(1 - \mu + \mu_{1})b_{12} \,; \quad g_{56} = \delta_{0}(1 - \mu)\frac{C_{T0}}{2i} \,; \\ g_{57} &= \delta_{0}\mu\frac{C_{T0}}{2i} \,; \quad g_{58} = g_{57} \,; \quad g_{59} = \frac{\delta_{0}}{2i} \,. \end{split}$$

Ограничиваясь рассмотрением колебательных процессов, будем искать решение системы (5) в виде $x_i = x_{i0} + x_{i1}; x_{i1} = A_i \sin(\Omega t^* + \phi_i); i = 2 \div 9$. Проведем гармоническую линеаризацию функции $C_N(\alpha_n + x_9)$, представив

$$C_{N}(\alpha_{n} + x_{9}) = J_{0} + Jx_{91},$$
(6)

где J₀, J – коэффициенты гармонической линеаризации [4]

$$J_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} C_{N} (\alpha_{n} + x_{9}) d\Omega t^{*};$$

$$J = \frac{1}{\pi A_{9}} \int_{0}^{2\pi} C_{N} (\alpha_{n} + x_{9}) \sin \Omega t^{*} d\Omega t^{*}.$$

Подставляя выражение (6) в уравнения системы (5) и переписывая полученные уравнения в операторной форме, будем иметь

$$(b_{12}s + g_{12})x_2 - (b_{13}s - g_{13})x_3 - (b_{14}s - g_{14})x_4 - (b_{15}s - g_{15})x_5 + (s + g_{17})x_7 + (s + g_{18})x_8 - (s + g_{19})x_9 = 0; sx_2 + b_{23}sx_3 - b_{24}sx_4 - (b_{25}s - g_{25})x_5 + g_{26}x_6 + g_{29}(J_0 + J) = 0; b_{32}sx_2 + sx_3 - (b_{34}s - g_{34})x_4 + g_{35}x_5 - g_{36}x_6 - g_{39}(J_0 + J) = 0; b_{42}sx_2 + b_{43}sx_3 - b_{44}sx_4 - (b_{45}s - g_{45})x_5 + g_{46}x_6 - g_{47}x_7 + g_{49}(J_0 + J) = 0; b_{52}sx_2 + b_{53}sx_3 - b_{54}sx_4 - (b_{55}s - g_{55})x_5 + g_{56}x_6 - g_{57}x_7 - g_{58}x_8 + g_{59}(J_0 + J) = 0; x_3 - sx_6 = 0; x_4 - x_5 + sx_8 = 0.$$
 (7)

Уравнения (7) распадаются на две системы, которые соответствуют постоянным и переменным составляющим искомого решения. Из системы для постоянных составляющих находим

$$J_0 = 0$$
.

Системе для переменных составляющих

$$(b_{12}s + g_{12})x_2 - (b_{13}s - g_{13})x_3 - (b_{14}s - g_{14})x_4 - (b_{15}s - g_{15})x_5 + (s + g_{17})x_7 + (s + g_{18})x_8 - (s + g_{19})x_9 = 0;$$

$$sx_2 + b_{23}sx_3 - b_{24}sx_4 - (b_{25}s - g_{25})x_5 + g_{26}x_6 + g_{29}J = 0;$$

$$b_{32}sx_2 + sx_3 - (b_{34}s - g_{34})x_4 + g_{35}x_5 - g_{36}x_6 - g_{39}J = 0;$$

$$b_{42}sx_2 + b_{43}sx_3 - b_{44}sx_4 - (b_{45}s - g_{45})x_5 + g_{46}x_6 - g_{47}x_7 + g_{49}J = 0;$$

$$b_{52}sx_2 + b_{53}sx_3 - b_{54}sx_4 - (b_{55}s - g_{55})x_5 + g_{56}x_6 - g_{57}x_7 - g_{58}x_8 + g_{59}J = 0;$$

$$x_3 - sx_6 = 0;$$

$$x_4 - x_5 + sx_8 = 0,$$

соответствует характеристическое уравнение вида

$$\mathbf{B}(\mathbf{s}) + \mathbf{J}\mathbf{G}(\mathbf{s}) = \mathbf{0}\,,\tag{9}$$

(8)

где

$$\mathbf{B}(s) = \sum_{\nu=0}^{7} \mathbf{B}_{\nu} s^{8-\nu} ; \qquad \mathbf{G}(s) = \sum_{\nu=1}^{8} \mathbf{G}_{\nu} s^{8-\nu} .$$

Подстановка s = j Ω в уравнении (9) приводит к системе, устанавливающей связь между значениями Ω и J искомых периодических колебаний

$$(B_0 \Omega^6 - B_2 \Omega^4 + B_4 \Omega^2 - B_6) \Omega^2 - J (G_2 \Omega^6 - G_4 \Omega^4 + G_6 \Omega^2 - G_8) = 0;$$

$$B_1 \Omega^6 - B_3 \Omega^4 + B_5 \Omega^2 - B_7 + J (G_1 \Omega^6 - G_3 \Omega^4 + G_5 \Omega^2 - G_7) = 0.$$
(10)

Дополняя систему (10) выражениями для коэффициентов J_0 , J и равенством (8), получим выражения, определяющие значения амплитуды A_9 , частоты Ω и смещения x_{90} центра искомых колебаний. Устойчивость колебаний проверяется с помощью уравнения (9).

<u>Пример.</u> Требуется исследовать периодические колебания в продольной плоскости ПС со свободно подвешенным грузом при следующих значениях ее параметров

$$\begin{split} C_{T0} = 0,7 \; ; \; & C_{N} = c_{1}\alpha + c_{2}\alpha^{3} ; \; c_{1} = -0,22 \; ; \; c_{2} = 0,552 \; ; \; \mu = 0,999 \; ; \; \mu_{1} = 0,2 \; ; \; \mu_{C} = 0,05 \; ; \\ \mu_{26} = \eta_{26} = -0,09 \; ; \; \delta_{C} = 0,7 \; ; \; \delta_{1} = 0,2 \; ; \; \delta_{0} = 0,25 \; ; \; \eta = 1,0 \; ; \; \eta_{C} = 0,02 \; ; \; \eta_{z} = 1,66 \; ; \\ \eta_{1} = 0,6 \; ; \; k = 1,0 ; \; i = 0,8 \; . \end{split}$$

Для заданной функции $C_N(\alpha)$ находим

$$\begin{split} \mathbf{J}_{0} &= \mathbf{c}_{2} \bigg[2\alpha_{\Pi}^{2} \mathbf{x}_{90} + 3\alpha_{\Pi} \mathbf{x}_{90}^{2} + \mathbf{x}_{90}^{3} + \frac{3}{2} (\alpha_{\Pi} + \mathbf{x}_{90}) \mathbf{A}_{9}^{2} \bigg];\\ \mathbf{J} &= \mathbf{c}_{2} \bigg[2(\alpha_{\Pi}^{2} + 3\alpha_{\Pi} \mathbf{x}_{90} + \frac{3}{2} \mathbf{x}_{90}^{2}) + \frac{3}{3} \mathbf{A}_{9}^{2} \bigg];\\ (\alpha_{\Pi})_{1} &= 0; \quad (\alpha_{\Pi})_{2,3} = \pm 0,632. \end{split}$$

Отсюда с учетом равенства (8) записываем

$$(\mathbf{x}_{90})_{1} = -\alpha_{\Pi}; \quad (\mathbf{x}_{90})_{2,3} = -\alpha_{\Pi} \pm \sqrt{\alpha_{\Pi}^{2} - \frac{3}{2}A_{9}^{2}};$$
(11)

$$(\mathbf{A}_{9})_{1} = \sqrt{\frac{4}{3c_{2}}(\mathbf{J} + c_{2}\alpha_{\Pi}^{2})}; \quad (\mathbf{A}_{9})_{2,3} = \sqrt{\frac{4}{15c_{2}}(2c_{2}\alpha_{\Pi}^{2} - \mathbf{J})}.$$
(12)

Подсчитываем коэффициенты характеристического уравнения (9)

 $\begin{array}{ll} B_0=0,0648; & B_1=0,0364; & B_2=0,31; & B_3=0,176; & B_4=0,034; & B_5=0,0194; \\ B_6=0,001; & B_7\!\!=0,\!0005; & G_1=0,\!137; & G_2=0,\!148; & G_3=0,\!332; & G_4=0,\!476; \\ G_5=-0,\!2; & G_6=0,\!094; & G_7=0,\!012; & G_8=-0,\!0042. \end{array}$

Полагая $C_N = C_N^{\alpha} x_9$, где

$$\mathbf{C}_{\mathrm{N}}^{\alpha} = \left(\frac{\partial \mathbf{C}_{\mathrm{N}}}{\partial \alpha}\right)_{\alpha = \alpha_{\mathrm{II}}} = \mathbf{c}_{1} + 3\mathbf{c}_{2}\alpha_{\mathrm{II}}^{2},$$

устанавливаем, что в линейном приближении при $\alpha_{\Pi} = \pm 0,632$ невозмущенное движение ПС устойчиво, а при $\alpha_{\Pi} = 0$ неустойчиво. Из системы (10) и выражений (11), (12) находим

$$\Omega = 0,508;$$
 J = 0,333; $(x_{90})_1 = -0,632;$ $(x_{90})_2 = -0,0652;$ $(x_{90})_3 = -1,198;$
(A₉)₁ = 1,156; (A₉)₂ = (A₉)₃ = 0,228.

Проверяя полученные решения на устойчивость, устанавливаем следующее. Первое решение с параметрами

$$(x_{90})_1 = -0.632; (A_9)_1 = 1.156; \Omega = 0.508;$$

соответствует режиму автоколебаний относительно установившегося снижения ПС с нулевым углом атаки ($\alpha_{\Pi} = 0$).

Второе решение с параметрами

$$(x_{90})_2 = -0.0652; (A_9)_2 = 0.228; \Omega = 0.508;$$

и третье решение с параметрами

 $(x_{90})_3 = -1,198; (A_9)_2 = 0,228; \Omega = 0,508;$

характеризуют неустойчивые периодические колебания относительно установившихся снижений ПС с углами атаки $(\alpha_{\Pi})_{2,3} = \pm 0,632$.

Таким образом, колебания устойчивой в линейном приближении ПС в окрестности рассматриваемого невозмущенного движения (установившегося спуска с углом атаки $\alpha_{\Pi} = 0,632$) будут затухающими только в том случае, если начальные значения угла атаки

 $\alpha = \alpha(0)$ (при нулевых значениях возмущений остальных переменных) удовлетворяют неравенству

$$0,339 < \alpha(0) < 0,794$$
. (13)

При значениях $\alpha(0)$, не удовлетворяющих неравенству (13), вертикальное снижение ПС происходит в режиме автоколебаний с амплитудой $A_9 = 1,156$ и частотой $\Omega = 0,508$.

На рис.4 для сравнения представлены зависимости $\alpha = \alpha(t^*)$, построенные по результатам численного решения системы (5) при $\alpha(0) = 0,7$ (рис. 4a) и $\alpha(0) = 0,96$ (рис. 4б).

Рис. 4.

Как показывают расчеты, соединительное звено может служить важным элементом ПС с точки зрения не только конструкции (например, удобства подвески груза), но и динамических характеристик. Так, увеличение длины звена l_1 заметно расширяет диапазон начальных значений угла атаки, при которых колебания устойчивой в линейном приближении ПС с нелинейной зависимостью $C_N(\alpha)$ будут затухающими.

Библиографический список.

1. Wolf D.E. The Dynamic Stability of Nonrigid Parachute and Playload System // AIAA Paper, № 209, 1970, p. 1-12.

2. Динамика связанных тел в задачах движения парашютных систем // О.В. Рысев, А.А. Вишняк, В.М. Чуркин, Ю.Н. Юрцев. – М.: Машиностроение, 1992 – 288 с.

3. Чуркин В.М. Динамика парашютных систем на этапе спуска. – М.: Изд-во МАИ-ПРИНТ, 2008. – 184 с.

4. Метод гармонической линеаризации в проектировании нелинейных систем автоматического управления // Под редакцией Ю.И. Топчеева. – М.: Машиностроение, 1970 – 567 с.

Сведения об авторе.

Чуркин Валерий Михайлович, профессор Московского авиационного института

(национального исследовательского университета); д.ф.-м.н.,

МАИ, Волоколамское ш., 4, Москва, А-80, ГСП-3, 125993;

тел.: (499) 158-45-84.; 613-30-13,

e-mail: churandr@mail.ru.