Математическое моделирование работы адаптивной замкнутой системы принудительного отделения грузов

А.Н. Беляев

Аннотация

Разрабатывается математическая модель функционирования автономной адаптивной системы принудительного отделения с обратной связью по скорости движения толкателей не требующей информации о действующих на авиационный груз внешних воздействиях. Анализируется влияние типа пиротехнического привода на параметры движения отделяемого авиационного груза

Ключевые слова

адаптивная система принудительного отделения; замкнутая система; обратная связь;датчики линейных ускорений; безопасность отделения грузов от самолета; установка авиационного вооружения

Введение

Безопасность отделения авиационного груза(АГ) достигается формированием установкой авиационного вооружения (УАВ) таких начальных условий полета АГ относительно самолета-носителя (линейной и угловой скорости АГ), при которых обеспечивается нахождение координат его центра масс (ЦМ) в области допустимых значений (ОДЗ) относительно самолета-носителя (СН) на любых боевых режимах полета, что обеспечивает исключение возможности соударения АГ с СН, включая элементы его конструкции и установленные нанемдругие АГ, а также сохранение системой стабилизации АГ его пространственной устойчивости в окрестностях СН.

Для обеспечения необходимых начальных параметров движения предлагается применить в установках авиационного вооружения адаптивную систему принудительного отделения (АСПО) с замкнутым контуром управления, в которой регулирование параметров движения АГ осуществляется в ходе катапультирования по текущей информации о

фактических параметрах движения AГ, приходящей от датчиков линейных ускорений установленных на толкателях УАВ контактирующих с АГ.

Движение АГ в процессе катапультирования представляет собой: линейное перемещение центра масс относительно СН вдоль оси Y (рисунок1) и вращение АГ вокруг оси тангажа с относительной угловой скоростью ω_z . Эти движения формируются, как силами $P_{\text{T}1}$ и $P_{\text{T}2}$, развиваемыми двумя толкателями, так и возмущающими воздействиями: аэродинамическими силами X,Y,Gn_y^c и моментом M_z , а также инерционно-массовыми характеристиками АГ. Перемещение АГ в плоскости Zисключается до момента потери механической связи АГ с УАВ, за счет конструктивного исполнения толкателей УАВ. Аэродинамическими воздействиями вдоль оси Xдля АГ не имеющих собственной двигательной установки можно пренебречь, т.к.АГ всегда отстают от СН после отделения, и выполняется условие $X_{\text{А}\Gamma\text{отн}} \leq 0$, где $X_{\text{А}\Gamma\text{отн}}$ — координаты АГ в системе координат относительно СН. Таким образом, имеем схему УАВ обладающую двумя степенями свободы и двумя управлениями проходными сечениями гидродросселей f_1 , f_2 (посредством перемещения золотников x_1, x_2).

После срабатывания пиропатрона в полости (1) (рисунок 1), давление газа в рабочей полости (2)пиропривода $P_2(t)$, воздействуя на поршень с площадью F_p , создает рабочее усиление привода Q(t):

$$Q(t) = P_2(t)F_n \tag{1}$$

передающееся на поршень площади $F_{g\,0}$ гидрораспределительного цилиндра (в представленном случае $F_p=F_{g\,0}$).

Давление жидкости P_{q0} в этом цилиндре (3), будет:

$$P_{g0} = \frac{Q(t)}{F_{g0}} \tag{2}$$

Вытесняемаягидросмесь разводится по трубопроводам на передний и задний рабочие гидроцилиндры гидротолкателей. Перед входом в эти гидроцилиндры установлены дроссельные регулирующие устройства понижающие величину подводимого к ним давления до давлений $P_{g1}(t)$ и $P_{g2}(t)$ соответственно в переднем и заднем гидротолкателях. Усилия P_{T1} и P_{T2} , развиваемые гидротолкателями и действующие непосредственно на катапультируемый АГ будут:

$$\begin{cases}
P_{T1}(t) = P_{g1}(t)F_{g1} \\
P_{T2}(t) = P_{g2}(t)F_{g2}
\end{cases}$$
(3)

Рис. 1. Расчетная схема отделения АГ от УАВ с АСПО

где F_{g1} , F_{g2} — площади поршней гидротолкателей в цилиндрах.

Рабочие усилия Q(t) для различных типов пироприводов будут определены ниже, далее же, считая Q(t), а следовательно и $P_{g0}(t)$ известными функциями, определим давления $P_{g1}(t)$ и $P_{g2}(t)$ в гидротолкателях и развиваемые ими толкающие усилия $P_{T1}(t)$ и $P_{T2}(t)$. При этом жидкость полагаем несжимаемой.

При строгом решении задачи в общем случае нужно учитывать следующие потери гидравлического напора:

- потери напора при внезапном сужении сечений на входе в трубопроводы из распределительного цилиндра;
 - потери напора при повороте потока жидкости (в частности, при поворотах труб);
- потери напора при течении в длинных трубах за счет трения о стенки труб (обусловлены наличием вязкости жидкости);
 - потери давления при течении через узкие дроссельные отверстия в регуляторах;
- потери напора при внезапном расширении сечений при входе из труб (после дросселей) в цилиндры переднего и заднего толкателей.

Таким образом, давления $P_{gi}(t)$ в толкателях могут быть выражены через $P_{g0}(t)$ за вычетом суммы вышеуказанных падений давления: $P_{gi} = P_{g0} - \sum_{j=1}^5 \Delta p_i^{(j)}$.

Заметим, что все вышеуказанные потери давления имеют динамический характер и пропорциональны первой и второй степеням скоростей жидкости в соответствующих сечениях.

Среди перечисленных падений давления P_{g0} основным является падение при прохождении через дроссельные устройства, поэтому будем в первом приближении учитывать только эту составляющую Δp_i .

В таком случае исходное давление $P_{g0}(t)$ будет иметь место как в гидрораспределительном цилиндре так и в общих трубопроводах до сечений установки в них дросселей.

Величины редуцированных управляемых давлений $P_{g1}(t)$ и $P_{g2}(t)$ отличаются от исходного высокого давления P_{g0} на величину перепада давлений на дросселях ΔP_1 , ΔP_2 :

$$\begin{cases} P_{g1}(t) = P_{g0}(t) - \Delta P_1(t) \\ P_{g2}(t) = P_{g0}(t) - \Delta P_2(t) \end{cases}$$
(4)

При этом перепады давления $\Delta P_1, \Delta P_2$, могут быть выражены как:

$$\Delta P_i = \frac{1}{2g} \gamma (1 - \frac{f_i^2}{F_{\text{TD}}^2}) v_{\partial pi}^2,$$

где $v_{\partial pi}$ — скорость жидкости в проходном сечении дросселя, γ - удельный вес равный произведению плотности жидкости ρ на ускорение свободного падения $g,\ f_i$ — площадь сечения дроссельного отверстия; $F_{\rm rp}$ — площадь поперечного сечения всей трубы, в которой установлен дроссель $(0 < f_i \le F_{\rm rp})$. Т.е. выражение для ΔP_i можно записать в виде:

$$\Delta P_i = \frac{1}{2} \rho (1 - \frac{f_i^2}{F_{rr}^2}) v_{\partial pi}^2. \tag{5}$$

Введем обозначение для относительного сечения дросселя:

$$\alpha = \frac{f_i}{F_{\rm rm}} \tag{6}$$

В случае отсутствия разрыва жидкости ее скорость $v_{\partial pi}$ может быть выражена через скорость i-го толкателя $\dot{y_i}$ из условия равенства расходов. При этом выражение для расхода через дроссель будет определяться как:

$$G_{*i} = \mu f_i v_{\partial ni} \tag{7}$$

где $\mu < 1$ – коэффициент расхода (зависит от конструкции дросселя, числа Рейнольдса, формы и размеров отверстия) учитывающий возможное сжатие струи после выхода из дросселя с тонкой диафрагмой, т.е. величина μf_i есть реальное эффективное сечение струи в

дросселе. В первом приближении можно сказать, что $\mu=\mu_0+(1-\mu_0)\alpha$, где коэффициент μ_0 для больших чисел Рейнольдса ($R_e>200$) может считаться постоянным и равным $\mu_0\approx 0.6$.

Из равенства расхода G_{*i} (7) изменению объема $\dot{y_i}F_{gi}$ выражаем $v_{\partial pi}$ как:

$$v_{\partial pi} = \frac{\dot{y}_i F_{gi}}{\mu_i f_i} \quad (i=1,2) \tag{8}$$

Перемещения точек толкания, равные ходам толкателей y_1 и y_2 с учетом малости угла θ определяются как:

$$y_1 = y_c - d_1\theta; y_2 = y_c + d_2\theta (9)$$

где d_1 и d_2 – расстояния от точек толкания до ЦМ АГ. Соответствующие скорости \dot{y}_1 и \dot{y}_2 будут:

$$\dot{y}_1 = \dot{y}_c - d_1 \dot{\theta}$$
 $\dot{y}_2 = \dot{y}_c + d_2 \dot{\theta}$ (10)

Тогда уравнения движения катапультируемого АГ будут иметь вид:

$$m\ddot{y}_{c} = P_{\text{T}1} + P_{\text{T}2} + (Gn_{y}^{c} - Y)$$

$$J_{c}\ddot{\theta} = -P_{\text{T}1}d_{1} + P_{\text{T}2}d_{2} + M_{z}$$
(11)

где m и $J_{\rm c}$ - соответственно масса и сила инерции АГ; $P_{\rm T1}$, $P_{\rm T2}$ - усилия толкания, выражающиеся по формуле (3) через давления P_{g1} и P_{g2} ;Y, M_z - аэродинамические подъёмная сила и момент тангажа; G=mg- сила веса АГ; n_y^c - маневренная перегрузка СН.

Величины давлений газа в пироприводе $P_1(t)$, $P_2(t)$ будут зависеть от хода поршня пиропривода s_p и его скорости $\dot{s_p}$. Эти величины могут быть выражены через \dot{y}_1 и \dot{y}_2 из следующих уравнений балансов:

– для объема вытесняемой жидкости:

$$F_{g0}s_p = F_{g1}y_1 + F_{g2}y_2 (12)$$

- как следствие равенства соответствующих расходов:

$$F_{g0}\dot{s_p} = F_{g1}\dot{y}_1 + F_{g2}\dot{y}_2 \tag{13}$$

– равенства расходов через дроссели скоростям изменения объемов гидроцилидров:

$$F_{g1}\dot{y}_1 = v_{\partial p1}f_1\mu_1$$

$$F_{a2}\dot{y}_2 = v_{\partial p2}f_2\mu_2 \tag{14}$$

Из (12), (13), (9), (10) выражаем s_p , $\dot{s_p}$:

$$s_p = \beta_1 y_1 + \beta_2 y_2 = \beta_1 (y_c - d_1 \theta) + \beta_2 (y_c + d_2 \theta)$$
 (15)

$$\dot{s_p} = \beta_1 \dot{y}_1 + \beta_2 \dot{y}_2 = \beta_1 (\dot{y}_c - d_1 \dot{\theta}) + \beta_2 (\dot{y}_c + d_2 \dot{\theta})$$
 (16)

где β_1 и β_2 отношения площадей толкателей, равные:

$$\beta_1 = \frac{F_{g1}}{F_{g0}}, \beta_2 = \frac{F_{g2}}{F_{g0}}$$
 (17)

из (14) выражаем скорости $v_{\partial p1}, v_{\partial p2}$:

$$v_{\partial p1} = \frac{\dot{y}_1 F_{g1}}{\mu_1 f_1};$$

$$v_{\partial p2} = \frac{\dot{y}_2 F_{g2}}{\mu_2 f_2}$$
(18)

Искомые давления в гидроцилиндрах P_{g1} , P_{g2} выражаются через давление $P_{g0} = \frac{Q(t)}{F_{g0}}$ и выражений (4) падения давлений на дросселях ΔP_i . При этом условные перепады давлений на дросселях $\Delta P_i^{'}$ согласно (5), (6), (18) определяются как:

$$\Delta P_1' = \frac{1}{2}\rho(1-\alpha_1^2)(\frac{\beta_1 \dot{y}_1}{\gamma_1 \alpha_1 \mu_1})^2$$

$$\Delta P_2' = \frac{1}{2}\rho(1-\alpha_2^2)(\frac{\beta_2 \dot{y}_2}{\gamma_2 \alpha_2 \mu_2})^2$$
(19)

где
$$\gamma_i = \frac{F_{{
m T}{
m p}i}}{F_p}\,(i=1,\,2)$$
, при $F_{g\,0} = F_p$.

Реальные перепады давлений ΔP_i совпадают с условными (19) когда $\Delta P_i \leq P_{g0}$, в противном случае ввиду одностороннего характера связей (давление не может быть отрицательным), следует принимать $\Delta P_i = P_{g0}$:

$$\Delta P_{i} = \begin{cases} \Delta P_{i}^{'}, & ecnu\Delta P_{i}^{'} \leq P_{g0} \\ P_{g0}, & ecnu\Delta P_{i}^{'} > P_{g0} \end{cases}$$

$$(20)$$

Так что общая запись для соотношений (4) будет иметь вид:

$$P_{gi} = \begin{cases} P_{g0} - \Delta P_{i}^{'}, \ ecnu\Delta P_{i}^{'} \leq P_{g0} \\ 0, \ ecnu\Delta P_{i}^{'} > P_{g0} \end{cases}$$
 (21)

При определении давления газов в полостях пирокамеры рассмотрим несколько типов пироприводов.

Силовой привода типа "газовая пружина" имеет место, когда полость сгорания (1) (рисунок 1) и рабочая полость (2) рассматриваются, как единый объем, в котором находится газ с начальным давлением p_0 . Малость времени горения заряда пиропатрона ($t_{\rm r} \approx 0.003{\rm c}$) в начальном объемев сравнении с временем катапультирования ($t_{\rm k} \approx 0.04{\rm c}$) и малость диаметра отверстия стравливающей дюзы даёт возможность применять схему "мгновенного

сгорания" и считать, что к моменту начала движения поршня F_{g0} (t=0) в полости пирокамеры устанавливается давление p_0 , которое может быть принято за начальное.

При определении p_0 полагаем, что масса заряда пиропатрона $m_{\rm n}$ полностью переходит в массу пороховых газов, которые в первом приближении можно считать идеальными и удовлетворяющими уравнению состояния идеального газа

$$p_0 V_0 = m_{\Pi} R T_V \tag{22}$$

где R — удельная газовая постоянная, зависящая от молекулярной массы газов μ ; T_V — постоянная температура горения пороха при постоянном объеме.

Тогда начальное давление может быть определено по формуле:

$$p_0 = \frac{m_{\rm n}f}{V_0},\tag{23}$$

где m_{Π} – масса заряда пороха; $f=RT_V$ – энергетическая характеристика пороха (сила пороха), V_0 – начальный объем полости сгорания.

Пренебрегая массой стравливаемого газа в атмосферу, связь между текущими и начальными значениями параметров P, V может быть в первом приближении получена из условия адиабатичности процесса (в силу быстроты его протекания):

$$p(V_0 + s_p F_p)^k = p_0 V_0^k (24)$$

где k – показатель адиабаты; s_p – перемещение поршня; F_p - площадь поршня.

Таким образом, давление является однозначной функцией положения поршня s_p :

$$P_{g0}(s) = p_0(\frac{V_0}{V_0 + s_n F_n})^k \tag{25}$$

Усилие Q, развиваемое приводом, определяется как:

$$Q(s) = (P_{g0}(s_p) - P_a)F_p$$
 (26)

где P_a – атмосферное давление.

Расчет параметров силового привода с полостью сгорания и рабочей полостью, разделенными промежуточной дросселирующей дюзой является значительно более сложной задачей нежели расчет пиропривода типа «газовая пружина». Изменения температур $T_j(t)$ и давлений газа $P_j(t)$ для каждой из полостей описываются дифференциальными уравнениями перетекания газа:

$$\frac{dT_j}{dt} = f_{Tj}\left(\vec{p}, \vec{T}\right)$$

$$\frac{dp_j}{dt} = f_{pj} \left(\vec{p}, \vec{T} \right)$$

при (i=1, 2).

Силовой привод моделируется системой произвольного числа полостей V_j , соединенных между собой дроссельными отверстиями[1].

В обобщенном алгоритме предусмотрено, что каждая полость V_j может соединяться с любой другой V_k дюзой сечением F_{*jk} , а также с атмосферой дюзой сечением F_{ja} $(j,k=\overline{1,n_V},$ в данном случае $n_V=2$).

Полагается, что газ в каждой полости однороден по объему и неподвижен (заторможен), а его движение имеет место только на коротких участках проточных частей, соединяющих объемы.

Дифференциальные уравнения для каждого объема выводятся на основе:

- уравнения состояния газа;
- уравнения баланса массы газа;
- закона сохранения энергии;
- соотношений для описания расхода газа при его адиабатическом истечении через сопло из V_i в V_k .

Учтены также конечность времени горения заряда $t_{_{\Gamma}}$ (хотя $t_{_{\Gamma}} \ll t_{_{K}}$). При этом приток газа $G_{_{\Gamma}}$ от горящего пороха определяется как:

$$G_{\Gamma} = \begin{cases} \frac{m_{\Pi}}{t_{\Gamma}} \partial \pi s t \leq t_{\Gamma} \\ 0 \partial \pi s t > t_{\Gamma} \end{cases}$$
 (27)

Полученная после преобразований система дифференциальных уравнений газодинамики для полостей V_1 и V_2 имеет вид:

$$\begin{cases}
\frac{dT_{1}}{dt} = \frac{RT_{1}}{p_{1}V_{1}} \left[G_{\Gamma}(T_{V} - T_{1}) - (k - 1)T_{1}G_{12} - \frac{k - 1}{R} \dot{q}_{1} \right] \\
\frac{dp_{1}}{dt} = \frac{RT_{1}}{dt} (G_{\Gamma} - G_{12}) + \frac{p_{1}}{T_{1}} \dot{T}_{1} \\
\frac{dT_{2}}{dt} = \frac{RT_{2}}{p_{2}V_{2}} \left[G_{12}(kT_{1} - T_{2}) - (k - 1)T_{2}G_{2a} - \frac{k - 1}{R} (p_{2}\dot{V}_{2} + \dot{q}_{2}) \right] \\
\frac{dp_{2}}{dt} = \frac{RT_{2}}{V_{2}} (G_{12} - G_{2a}) + \frac{p_{2}}{T_{2}} \dot{T}_{2} - \frac{p_{2}}{V_{2}} \dot{V}_{2}
\end{cases} (28)$$

Здесь для переменного объема V_2 имеем:

$$V_2 = V_{2,0} + s_p F_{g0}; \qquad \dot{V}_2 = \dot{s_p} F_{g0}$$
 (29)

Мощность теплопотерь \dot{q}_i приближенно определяется как:

$$\dot{q}_j(t) \approx \alpha_j F_{\text{cr}j} \left(T_j(t) - T_{\text{a}} \right), j = 1, 2$$
(30)

где α_j — коэффициент теплоотдачи от газа в полости V_j к стенке с внутренней поверхностью $F_{\text{ст}j}$ и с температурой атмосферы T_{a} . Расходы газа определяются как:

$$G_{12} = q(\frac{p_2}{p_1})\xi_{12}F_{12*}C\frac{P_1}{RT_1}$$
(31)

$$G_{2a*} = \xi_{2a} F_{2a} C \frac{P_2}{RT_2} \tag{32}$$

где
$$C = \sqrt{k(\frac{2}{k+1})^{\frac{k+1}{k-1}}}$$
 (33)

В (31) $q\frac{p_2}{p_1}$ — функция истечения, причем, q=1 при $\frac{p_2}{p_1} \ge \gamma_{\rm кp}$ (сверхкритический режим) и 0 < q < 1 при $\frac{p_2}{p_1} < \gamma_{\rm kp}$, где $\gamma_{\rm kp}$ — для идеального газа определяется как:

$$\gamma_{\mathrm{kp}} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} \tag{34}$$

На рисунках 2 и 3 показаны основные отличия характеристик АСПО выполненной с пироприводом, в котором полость сгорания и рабочая полость рассматриваются как единый объем («газовая пружина») и двухполостнымпироприводом с дросселированием пороховых газов.

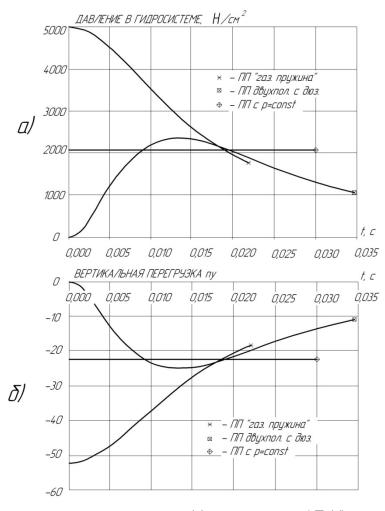


Рис.2. Изменение давления в гидросистеме (a) и перегрузки АГ (б) для различных типов пиропривода

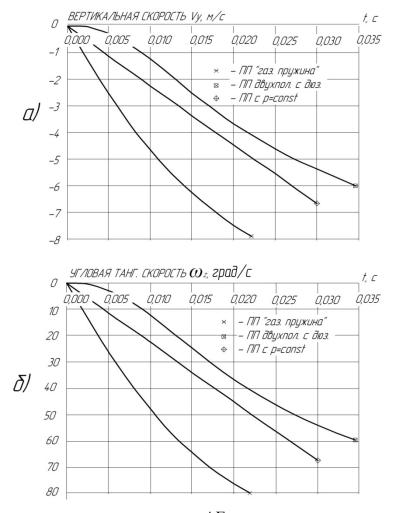


Рис.2. Изменение параметров движения АГ для различных типов пиропривода

Полученными графиками зависимостей наглядно подтверждается преимущество использования двухполостногопиропривода, заключающееся в плавности нарастания давления в системе, перегрузки, вертикальной скорости и угловой скорости АГ по сравнению с пироприводом типа «газовая пружина», в котором изменение характеристик происходит скачкообразно.

Система уравнений газодинамики (28) содержит в составе V_2 , \dot{V}_2 выражаемые через переменные s_p и $\dot{s_p}$, определяемые в соответствии с (15), (16) через переменные интегрирования y_c и θ уравнений механики (11). В свою очередь, усилиеQ(t), входящее в уравнения механики (11) через выражения (2), (3) определяется через давление $p_2(t)$ согласно (1): $Q(t) = (p_2(t) - p_a)F_p$.

В формулы (11), через значения для толкающих усилий P_{T1} , P_{T2} выражаемых в свою очередь по формулам (4), (5) входят проходные сечения клапанов-регуляторов f_1 , f_2 , являющиеся переменными управляемыми величинами. Автоматическое управление

сечениями f_1 , f_2 будем осуществлять путем введения отрицательных обратных связей по скоростям толкателей $\dot{y}_1(t)$, $\dot{y}_2(t)$.

Рассмотрим систему автоматического управления дросселями АСПО с помощью быстродействующего исполнительного механизма с обратной связью по текущим значениям линейных скоростей гидротолкателей $\dot{y}_1(t)$, $\dot{y}_2(t)$. Исходными данными в системе являются желаемые параметры отделения:

- линейная скорость переднего толкателя $\dot{y}_1 = V_{y1}$ (находящегося ближе к ЦМ АГ и в значительной степени формирующим линейную вертикальную скорость АГ);
 - конечная угловая скорость АСП $\dot{\theta} = \omega_{z*}$;
 - ход переднего толкателя $y_1 = h_1$;

на основе которых, задаются необходимые скорости переднего $u_1(t)$ и заднего $u_2(t)$ толкателей.

Тогда, конечная скорость заднего толкателя должна быть $V_{y2} = \dot{y}_2 = V_{y1} + d\omega_{z*}$, (где d – расстояние между толкателями).

Во многих системах управления на вход подаются ступенчатые постоянные сигналы скоростей толкателей u_1 , u_2 , равные конечным значениям скоростей V_{y1} , V_{y2} : $u_1 = V_{y1}$, $u_2 = V_{y1} + d\omega_{z*}$, $d = d_1 + d_2$, которые должны быть отработаны. Однако, учитывая специфику объекта управления системы «УАВ-АГ» такой способ задания скоростей $u_1(t)$ и $u_2(t)$ нежелателен по следующим причинам:

- время достижения реальной скоростью толкателя \dot{y}_1 величины u_1 , а также конечное значение фазовой координаты y_1 при этом неопределенны, поскольку зависят от постоянных времени регуляторов и коэффициентов усиления;
- требуемые скорости катапультирования \dot{y}_1 могут быть достигнуты раньше достижения полного хода катапультирования (когда еще $y_1 < h_1$), что вызовет необоснованно высокие перегрузки АГ, превышающие допустимые;
- низкое качество переходного процесса в случае ступенчатого входного сигнала, когда в максимальной степени проявляются все негативно влияющие колебательные составляющие динамической системы управления, способствующие довольно большой перерегулировке;
- ввиду малой длительности всего процесса (~ 0,04 c) при ступенчатом сигнале может потребоваться необоснованно высокое быстродействие системы управления.

По указанным причинам в качестве скоростей толкателей $u_1(t)$, $u_2(t)$ принимаем линейные зависимости от времени:

$$u_1(t) = a_1 t; \ u_2(t) = a_2 t$$
 (35)

где a_i – ускорения толкателей.

В каждый момент времени определяются рассогласования Δ_i между задаваемыми u_1 и u_2 и реальными \dot{y}_1 , \dot{y}_2 скоростями толкателей, при этом реальные скорости толкателей \dot{y}_1 , \dot{y}_2 определяются интегрированием показаний датчиков линейных ускорений (ДЛУ) \ddot{y}_1 , \ddot{y}_2 , установленных на толкателях.

Задающая угловая скорость АГ $\dot{\theta}_u(t)$ также линейна по времени t и может быть определена как

$$\dot{\theta}_u(t) = \frac{\dot{y}_2 - \dot{y}_1}{d} = \frac{a_2 - a_1}{d}t\tag{36}$$

При этом постоянные a_1 , a_2 выражаются через заданные параметры h_1 , V_{y1} , ω_{z*} по формулам:

$$a_1 = \frac{V_{y1}^2}{2h_1} \tag{37}$$

$$a_2 = \frac{V_{y1}}{2h_1}(V_{y1} + d\omega_{z*}) \tag{38}$$

При таких значениях a_1 , a_2 в конце заданного хода h_1 , который достигается через время t_* , равное:

$$t_* = \frac{V_{y1}}{a_1} = \frac{2h_1}{V_{y1}} \tag{39}$$

достигаются требуемые параметры отделения: линейная скорость переднего толкателя $u_1(t_*) = V_{y1}$ и угловая скорость АСП $\dot{\theta}_u(t_*) = \omega_{z_*}$.

Задание плавных зависимостей u_1 делает переходной процесс также более плавным и свободным от вышеуказанных недостатков (в частности, в конце процесса обе фазовые координаты принимают требуемые значения, а сам процесс катапультирования происходит с минимальной перегрузкой).

Рассогласования между задающими и реальными скоростями толкателей определяются как:

$$\Delta_1 = a_1 t - \dot{y}_1$$

$$\Delta_2 = a_2 t - \dot{y}_2 \tag{40}$$

Сечение каждого регулируемого дросселя f_i устанавливается быстродействующим механизмом путем перемещения золотника x_i пропорционально разности Δ_i , пропущенной через динамический тракт электрогидроусилителя (ЭГУ), характеризуемого некоторой передаточной функцией W(s)[2]:

$$x_{i}^{'} = W(s)K_{oc}\Delta_{i}, \quad (i = 1,2),$$
 (41)

$$x_{i} = \begin{cases} x_{i}^{'}, ecnu \ 0 \leq x_{i}^{'} < x_{imax} \\ x_{imax}, ecnux_{i}^{'} > x_{imax} \\ 0, ecnux_{i}^{'} < 0 \end{cases}$$
(42)

где $x_{i}^{'}$ — условное смещение золотника ЭГУ, x_{imax} — максимально возможное смещение золотника ЭГУ, x_{i} — реальное перемещения золотника; K_{oc} — коэффициент усиления (передачи) по обратной связи.

Величины $K_{oc}\Delta_i$, входящие в выражение (41), подаются в виде управляющего напряжения с коэффициентом усиления K_{oc} на вход двух одинаковых ЭГУ.

На выходе имеем ход золотника x_i , который определяет величину проходного сечения дросселя f_{imax} : $x_{imax} = \frac{f_{imax}}{h}$

где b — ширина окна в гильзе золотника.

Текущее проходное сечение золотника $f_i(t)$ определяется через ход золотника $x_i(t)$ как:

$$f_i(t) = bx_i(t) \tag{43}$$

Если динамические свойства ЭГУ описать звеном второго порядка, когда $W(s) = (T^2 s^2 + 2\xi T s + 1)^{-1}, \text{ тогда условные перемещения золотника } x_i^{'} \text{ определяются как:}$ $T^2 \ddot{x}_i^{'} + 2\xi T \dot{x}_i^{'} + x_i^{'} = K_{0c} \Delta_i \qquad (i = 1, 2) \tag{44}$

с учетом ограничений (42) на x_i , где T – постоянная времени колебательного звена ЭГУ, ξ – коэффициент демпфирования колебательного звена ЭГУ, s – параметр преобразования Лапласа.

Переменными интегрирования (обобщенными координатами) являются: перемещение ЦМ АГ y_c , его угол тангажа θ и перемещения золотников x_1 , x_2 исполнительных механизмов ЭГУ: $q_1 = y_c$; $q_2 = \theta$; $q_3 = x_1$; $q_4 = x_2$. (45)

Через них выражаются все остальные переменные (ходы, скорости и ускорения толкателей):

$$y_{1} = y_{c} - d_{1}\theta$$
 $y_{2} = y_{c} + d_{2}\theta$
 $\dot{y}_{1} = \dot{y}_{c} - d_{1}\dot{\theta}$ $\dot{y}_{2} = \dot{y}_{c} + d_{2}\dot{\theta}$ (46)
 $\ddot{y}_{1} = \ddot{y}_{c} - d_{1}\theta$ $\dot{y}_{2} = \ddot{y}_{c} + d_{2}\ddot{\theta}$

Система дифференциальных уравнений (11), (28), (44) путем введения соответствующих обозначений для переменных: $y = \left\{ y_c, \dot{y}_c, \theta, \dot{\theta}, T_1, p_1, T_2, p_2, x_1, x_2 \right\}^T$ приводится к нормальной форме Коши: $\frac{d\vec{y}}{dt} = \vec{f}(\vec{y})$ и численно интегрируется методом Рунге-Кутта при начальных условиях: $y_c(0) = \dot{y}_c(0) = \theta(0) = \dot{\theta}(0) = 0$; $T_1(0) = T_2(0) = T_3$;

 $p_1(0) = p_2(0) = p_a$; $x_1(0) = x_2(0) = 0$ до тех пор пока значение y_1 , определяемое согласно (46), не достигнет заданной величины h_1 .

Выводы и рекомендации

Для обеспечения безопасности отделения АГ от СН на всех режимах боевого применения целесообразно использовать АСПО с замкнутым контуром управления с обратной связью по линейным скоростям толкателей \dot{y}_1 , \dot{y}_2 , которые определяются интегрированием показаний датчиков линейных ускорений \ddot{y}_1 , \ddot{y}_2 , установленных на толкателях.

Наиболее существенные падения давления P_{g0} в гидросистеме возникают при прохождении гидросмеси через дроссельные устройства, поэтому моделирование в первом приближении необходимо производить с учетом данной составляющей Δp_i .

Из рассмотрения двух типов пирогидравлического привода: типа «газовая пружина» и «двухполостнойпиропривод», можно сделать вывод опреимуществе использования двухполостногопиропривода, обеспечивающего плавное изменения параметров АСПО: давления в системе, перегрузки, вертикальной скорости и угловой скорости АГ по сравнению с пироприводом типа «газовая пружина», в котором изменение характеристик происходит скачкообразно.

Для улучшения качества процесса управления скоростями гидротолкателей необходимо использовать задающие сигналы в виде временных линейных зависимостей a_1t , a_2t ,с ускорениями толкателей a_1,a_2 , определяемыми требуемыми значениями параметров отделения: линейной вертикальной скорости $V_y^{\rm K}$ и тангажнойскорости $\omega_z^{\rm K}$ АГ, что делает переходной процесс более плавным и проходит с минимальной перегрузкой.

Библиографический список

- 1. Синицин Н.В. Определение газодинамических параметров пиротехнического привода, оснащенного двумя толкателями // Проблемы безопасности полетов,2008, №9, с. 43-53.
 - 2. Башта Т.М. Машиностроительная гидравлика // Машгиз, Москва, 1971, 672 с.

Сведения об авторах

Беляев Александр Николаевич, начальник отдела ОАО «ГосМКБ «Вымпел» им. И.И. Торопова», e-mail: <u>Alex JC@mail.ru</u>