УДК 539.374

Колебания круговых трехслойных пластин на упругом основании под действием параболических нагрузок

Старовойтов Э.И.,* Леоненко Д.В.,**

Белорусский государственный университет транспорта, БЕЛГУТ, ул. Кирова, 34, Гомель, 246653, Республика Беларусь *e-mail: <u>edstar@mail.by</u> **e-mail: <u>leoden@tut.by</u>

Аннотация

Исследованы осесимметричные вынужденные колебания упругой круговой трехслойной пластины, скрепленной с упругим основанием, под действием параболических нагрузок. Для описания кинематики несимметричного по толщине пакета приняты гипотезы ломаной нормали. Упругое основание описывается моделью Винклера. Заполнитель – легкий. Проведен численный анализ решений. Результаты сопоставлены со случаем локальной поверхностной нагрузки прямоугольной формы.

Ключевые слова: трехслойная круговая пластина, упругое основание, колебания, параболические нагрузки.

Введение

Трехслойные элементы конструкций всё чаще находят широкое применение в в авиационной и ракетно-космической технике, в том числе при изготовлении кры-

1

льев, хвостового оперения и топливных баков. Так же актуально использование подобных элементов конструкций в интенсивно развивающихся отраслях строительства и промышленности (транспортное машиностроение, реакторное оборудование и т.д.). Результаты, связанные с малыми поперечными колебаниями круговых трехслойных пластин, получены в статье [1]. В работах [2, 3] исследовано поведение трехслойных конструкций на упругом основании. В работе [7] рассмотрено воздействие нестационарных нагрузок на упругий слой, сцепленный с абсолютно жестким основанием. Здесь рассматриваются малые осесимметричные поперечные колебания несимметричной по толщине упругой трехслойной круговой пластины на упругом основании, возбужденные внезапно приложенными нагрузками параболической формы.

1. Постановка задачи

Решение задачи приводится в цилиндрической системе координат r, φ , z. Заполнитель считаем легким, т. е. пренебрегаем его работой в тангенциальном направлении. Внешняя вертикальная нагрузка не зависит от координаты φ : q = q(r, t). К наружной грани второго несущего слоя приложена реакция упругого основания q_R (рис. 1). На контуре пластинки предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев. В силу симметрии задачи тангенциальные перемещения в слоях отсутствуют, а прогиб пластинки w, относительный сдвиг в заполнителе ψ и радиальное перемещение координатной поверхности u не зависят от координаты φ , то есть u(r, t), $\psi(r, t)$, w(r, t). В дальнейшем эти функции считаем искомыми.

2

Рис. 1. Трехслойная пластина

Связь между реакцией и прогибом примем в соответствии с моделью Винклера, согласно которой $q_R = \kappa_0 w$, $\kappa_0 - \kappa_0 \phi \phi$ ициент жесткости упругого основания.

Система дифференциальных уравнений в частных производных, описывающая вынужденные поперечные колебания круговой трехслойной пластины, связанной с упругим основанием, получена из вариационного принципа Гамильтона:

$$L_{2}(a_{1}u + a_{2}\psi - a_{3}w,_{r}) = 0, \quad L_{2}(a_{2}u + a_{4}\psi - a_{5}w,_{r}) = 0,$$

$$L_{3}(a_{3}u + a_{5}\psi - a_{6}w,_{r}) - M_{0}\ddot{w} - \kappa_{0}w = -q.$$
(1)

Здесь $M_0 = \rho_1 h_1 + \rho_2 h_2 + \rho_3 h_3$; h_1 , h_2 , $h_3 = 2c$ – толщины несущих слоев и заполнителя; ρ_i – плотности материалов; коэффициенты a_i и дифференциальные операторы L₂, L₃ определяются соотношениями

$$a_{1} = \sum_{k=1}^{3} h_{k} K_{k}^{+}; \quad a_{2} = c(h_{1}K_{1}^{+} - h_{2}K_{2}^{+}); \quad K_{k}^{+} \equiv K_{k} + \frac{4}{3}G_{k},$$

$$a_{3} = h_{1} \left(c + \frac{1}{2}h_{1} \right) K_{1}^{+} - h_{2} \left(c + \frac{1}{2}h_{2} \right) K_{2}^{+}, \quad a_{4} = c^{2} \left(h_{1}K_{1}^{+} + h_{2}K_{2}^{+} + \frac{2}{3}cK_{3}^{+} \right),$$

$$a_{5} = c \left[h_{1} \left(c + \frac{1}{2}h_{1} \right) K_{1}^{+} + h_{2} \left(c + \frac{1}{2}h_{2} \right) K_{2}^{+} + \frac{2}{3}c^{2}K_{3}^{+} \right],$$

$$a_{6} = h_{1} \left(c^{2} + ch_{1} + \frac{1}{3}h_{1}^{2} \right) K_{1}^{+} + h_{2} \left(c^{2} + ch_{2} + \frac{1}{3}h_{2}^{2} \right) K_{2}^{+} + \frac{2}{3}c^{3}K_{3}^{+},$$

$$L_{2}(g) \equiv \left(\frac{1}{r}(rg), r\right), r \equiv g_{rr} + \frac{g_{r}}{r} - \frac{g}{r^{2}}, \quad L(g) \equiv \frac{1}{r} \left(r L_{2}(g)\right), r \equiv g_{rr} + \frac{2g_{r}}{r} - \frac{g_{r}}{r^{2}} + \frac{g}{r^{3}},$$

где *G_k*, *K_k* – модули сдвиговой и объемной деформации материала; запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате, а точки – производные по времени *t*.

Задача нахождения функций u(r, t), $\psi(r, t)$, w(r, t) замыкается присоединением к (1) граничных и начальных условий.

Для решения задачи построена система собственных ортонормированных функций $v_n \equiv v(\lambda_n, r)$, которая для сплошных пластин имеет вид

$$v_n \equiv \frac{1}{d_n} \left[J_0(\lambda_n r) - \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} I_0(\lambda_n r) \right], \qquad (2)$$

где *J_n*, *I_n* – функции Бесселя *n*-го порядка от действительного и комплексного аргументов [4]; *d_n* –коэффициенты, нормирующие систему (2).

В результате для описания вынужденных колебаний рассматриваемой пластинки внешняя нагрузка q(r, t) и искомое решение u(r, t), $\psi(r, t)$, w(r, t) представляются в виде следующих разложений в ряд:

$$q(r,t) = M_0 \sum_{n=0}^{\infty} v_n q_n(t); \quad q_n(t) = \frac{1}{M_0} \int_0^{r_1} q(r,t) v_n r dr,$$
$$w(r,t) = \sum_{n=0}^{\infty} v_n T_n(t), \quad \psi(r,t) = b_2 \sum_{n=0}^{\infty} \varphi_n T_n(t), \quad u(r,t) = b_1 \sum_{n=0}^{\infty} \varphi_n T_n(t), \quad (3)$$

где

$$\varphi_n(\lambda_n,r) = \frac{\lambda_n}{d_n} \left\{ J_1(\lambda_n r_1)r - J_1(\lambda_n r) + \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} \left[I_1(\lambda_n r_1)r - I_1(\lambda_n r) \right] \right\},$$

$$q_n(t) = \frac{1}{M_0} \int_0^{r_1} q(r,t) v_n r dr, \quad b_1 = \frac{a_3 a_4 - a_2 a_5}{a_1 a_4 - a_2^2}; \quad b_2 = \frac{a_1 a_5 - a_2 a_3}{a_1 a_4 - a_2^2}.$$

Собственные числа λ_n определяются как корни алгебраических уравнений, следующих из условий закрепления. Например, при заделке контура пластины должны выполняться требования $u = \psi = w = w_{,r} = 0$. Удовлетворяя два последние из них с помощью представления (3), получим трансцендентное уравнение для вычисления собственных чисел $I_1(\lambda r_1)J_0(\lambda r_1) = -J_1(\lambda r_1)I_0(\lambda r_1)$. После этого частоты колебаний ω_n получим из соотношения

$$\omega_n^2 = \frac{\beta_n^4}{M^4}, \quad \beta_n^4 = \lambda_n^4 + \kappa^4,$$

где

$$M^{4} = M_{0}D, D = \frac{a_{1}(a_{1}a_{4} - a_{2}^{2})}{(a_{1}a_{6} - a_{3}^{2})(a_{1}a_{4} - a_{2}^{2}) - (a_{1}a_{5} - a_{2}a_{3})^{2}}, \kappa^{4} = \kappa_{0}D.$$

Уравнение для определения неизвестной функции времени $T_n(t)$ следует из третьего уравнения системы (1) после подстановки в него выражений (3) и использования линейной связи функций v_n , ϕ_n :

$$\ddot{T}_n + \omega_n^2 T_n = q_n \,. \tag{4}$$

Общее решение уравнения (4) для *нестационарных нагрузок* можно принять в виде:

$$T_n(t) = A_n \cos(\omega_n t) + B_n \sin(\omega_n t) + \frac{q_n}{\omega_n^2} \left[1 - \cos(\omega_n t)\right].$$
(5)

Задача исследования вынужденных колебаний, как правило, сводится к отысканию параметров $q_n(t)$ разложения в ряд заданной нагрузки.

2. Вынужденные колебания

1. Рассмотрим локально приложенную параболическую нагрузку (рис. 2, *a*)

$$q(r) = q_0 \left[1 - (r/a)^2 \right] H(a - r),$$
(6)

где *H*(*r*) – единичная функция Хевисайда [5].

Подставив (6) в формулу (3) для параметров разложения нагрузки в ряд по системе собственных ортонормированных функций, получим следующее интегральное выражение

$$q_{n}(t) = \frac{q_{0}}{M_{0}d_{n}a^{2}} \int_{0}^{n} \left[J_{0}(\lambda_{n}r) - \frac{J_{0}(\lambda_{n}r_{1})}{I_{0}(\lambda_{n}r_{1})} I_{0}(\lambda_{n}r) \right] (a^{2} - r^{2})rH(a - r)dr$$

Рис. 2. Расчетная схема нагружения

Определенные интегралы в последней фомрмуле, содержащие произведения степенных и бесселевых функций на функцию Хевисайда, вычисляются с помощью известных формул [6]:

$$q_n(t) = \frac{2q_0}{M_0 d_n \lambda_n^2} \left[J_2(\lambda_n a) - \frac{J_0(\lambda_n)}{I_0(\lambda_n)} I_2(\lambda_n a) \right].$$
(7)

2. Пусть вогнутая параболическая нагрузка распределена по кругу радиуса *r* = *a* (рис. 2, *б*):

$$q(r,t) = q_0 \left(1 - r/a\right)^2 H(a - r).$$
(8)

Подставив (8) в формулу (3), получим следующий результат:

$$q_{n}(t) = \frac{4q_{0}}{M_{0}d_{n}\lambda_{n}^{3}a} \left[\sum_{m=1}^{\infty} J_{2m+1}(\lambda_{n}a) + \frac{J_{0}(\lambda_{n}r_{1})}{I_{0}(\lambda_{n}r_{1})} \sum_{m=1}^{\infty} (-1)^{m} I_{2m+1}(\lambda_{n}a) \right].$$
(9)

3. Пусть внезапно приложенная нагрузка распределена по кругу $r \le a$, обращаясь в нуль в центре пластины и достигая максимума на контуре силовой окружности (рис. 2, *в*):

$$q(r,t) = \frac{q_0 r^2}{a^2} H(a-r).$$
 (10)

Тогда, используя формулу (3), получаем такое выражение для параметров разложения нагрузки в ряд

$$q_n(t) = \frac{q_0}{M_0 d_n \lambda_n} \left\{ a J_1(\lambda_n a) - \frac{2}{\beta_n} J_2(\lambda_n a) - \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} \left[a I_1(\lambda_n a) - \frac{2}{\beta_n} I_2(\lambda_n a) \right] \right\}.$$
(11)

4. Для случая равномерно распределенной локальной прямоугольной нагрузки

$$q(r,t) = q_0 H(a-r)$$
 (12)

параметры разложения в ряды (3) будут следующими

$$q_n(t) = \frac{q_0 a}{M_0 d_n \lambda_n} \left[J_1(\lambda_n a) - \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} I_1(\lambda_n a) \right].$$
(13)

Окончательно для всех рассмотренных видов нагрузки перемещения в рассматриваемой задаче о вынужденных колебаниях круговой трехслойной пластины определяются соотношениями (3), а функция $T_n(t)$ вычисляется по формуле (5) с учетом параметров нагрузок (7), (9), (11), (13).

3. Численное исследование

Численные результаты получены для защемленной по контуру круговой трехслойной пластины, несвязанной и связанной с основанием средней жесткости $\kappa_0 = 10^8 \text{ Па/м.}$ Линейные размеры отнесены к радиусу пластины. Слои набраны из материалов Д16Т-фторопласт-Д16Т с относительной толщиной $h_1 = h_2 = 0,01$, c = 0,05. Начальные условия движения нулевые, что позволяет положить в (5) константы интегрирования $A_n = B_n = 0$. Анализ сходимости суммируемых рядов при вычислении перемещений показал, что достаточно удерживать первые 14 слагаемых, так как добавление последующих на результат практически не влияет.

Примем, что равнодействующая параболической (6) и прямоугольной (12) нагрузок одинакова. Для этого потребуем равенство интегралов по объему, занимаемому соответствующей нагрузкой в фиксированный момент времени. В результате получим соответствующую амплитуду параболической нагрузки

$$q_{0}' = q_{0} \int_{V} H_{0}(a-r) dV \bigg/ \int_{V} H_{0}(a-r) \bigg(1 - \bigg(\frac{r}{a} \bigg)^{2} \bigg) dV = 2q_{0}.$$
(14)

Рисунок 3, *а* демонстрирует изменение во времени прогибов в центре рассматриваемой пластины, связанной с упругим основанием средней жесткости, при воздействии на всю ее внешнюю поверхность нагрузки параболической (кривая *I*) и прямоугольной (кривая *2*) форм с одинаковой равнодействующей. В этом случае амплитуда q_0 ' выпуклой параболической нагрузки, рассчитанная в соответствии с формулой (14), превосходит интенсивность прямоугольной нагрузки $q_0 = 70$ кПа в 2 раза. На рисунке 3, *б* показано изменение прогиба круговой трехслойной пластины, связанной с упругим основанием средней жесткости, в зависимости от радиуса пятна локальной распределенной динамической нагрузки в момент времени $t = \pi/\omega_0$ при одинаковой по величине равнодействующей. Максимум прогиб достигает при действии нагрузки на всю внешнюю поверхность пластины.

В результате получим, что частота колебаний резко возросла, а прогибы уменьшились, цикл колебаний перестал быть отнулевым. Максимальный прогиб от выпуклой параболической нагрузки в момент t = 0,0355 с превосходит по величине прогиб от прямоугольной нагрузки в 1,35 раз. Следовательно, при одинаковой по величине равнодействующей выпуклая параболическая нагрузка более опасна, чем прямоугольная, как вызывающая в пластине бо́льшие прогибы. Этот эффект наблюдается как для пластин связанных с упругим основанием, так и без него.

1 – выпуклая параболическая нагрузка, *2* – прямоугольная

Рис. 3. Зависимость прогибов в центре пластины на основании средней жесткости во времени (*a*) и от радиуса (б) пятна нагрузки параболической и прямоугольной форм с одинаковой равнодействующей

На рисунке 4 показано изменение прогибов пластины во времени при воздействии на внешнюю поверхность пластины локальной распределенной нагрузки вогнутой параболической формы (8): 1 - a = 0,5; 2 - a = 1 (a - 6es основания, δ – на основании средней жесткости). В этом случае амплитуда вогнутой параболической нагрузки, рассчитанная по формуле аналогичной (14), превосходит интенсивность принятой прямоугольной нагрузки $q_0 = 60$ кПа в 6 раз: $q_0' = 6q_0$. При наличии основания максимальный прогиб уменьшается примерно в 27 раз. Распространение нагрузки на всю поверхность пластины увеличивает прогиб в 2,7 раза пластины несвязанной с упругим основанием, и в 1,6 раза при наличии основания. Подобный результат наблюдается и для относительного сдвига в заполнителе.

Рис. 4. Изменение прогибов во времени при воздействии локальной распределенной нагрузки вогнутой параболической формы при отсутствии основания (*a*) и на основании средней жесткости (*б*)

Рисунок 5 показывает изменение прогибов во времени: a – пластина без основания; δ – при основании средней жесткости. На внешнюю поверхность пластины воздействует вогнутая чашеобразная параболическая нагрузка (10): 1 - a = 0,5; 2 - a = 1. Амплитуда нагрузки q_0 ' превосходит интенсивность прямоугольной нагрузки q_0 = 70 кПа в 2 раза: q_0 ' = $2q_0$.

Рис. 5. Изменение прогибов во времени при воздействии вогнутой чашеобразной параболической нагрузки при отсутствии основания (*a*) и на основании средней жесткости (б)

При отсутствии упругого основания прогибы различаются мало. У пластины, связанной с деформируемым основанием, прогибы при распространении нагрузки на всю поверхность увеличиваются примерно вдвое.

Исследование выполнено за счет гранта Российского научного фонда (проект №14-49-00091).

Библиографический список

1. Григолюк Э.И., Кассихин В.Н. Малые поперечные колебания слоистых круговых пластин // Проблемы прочности. 1982. № 10. С. 65 - 68.

2. Леоненко Д. В., Старовойтов Э. И. Тепловой удар по круглой трехслойной пластине на упругом основании // Известия РАН. Механика твердого тела. 2012.

№ 1. C. 141–149.

3. Плескачевский Ю.М., Старовойтов Э.И., Леоненко Д.В. Механика трехслойных стержней и пластин, связанных с упругим основанием. - М.: ФИЗМАТ-ЛИТ, 2011. - 560 с.

 Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. - М.: Наука, 1966. Т. 2. - 295 с.

5. Корн Г., Корн Т. Справочник по математике. - М.: Наука, 1973. - 832 с.

 Леоненко Д.В. О некоторых интегралах, содержащих произведение степенных и бесселевых функций // Известия Гомельского государственного университета им. Ф. Скорины. 2005. № 5 (32). С. 150–153.

7. Кузнецова Е.Л., Тарлаковский Д.В., Федотенков Г.В., Медведский А.Л. Воздействие нестационарной распределенной нагрузки на поверхность упругого слоя // Электронный журнал «Труды MAИ», 2013, Выпуск № 71: http://www.mai.ru/science/trudy/published.php?ID=46621 публикации (дата 26.12.2013).

12