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Abstract 

Mihailo Petrović (1868-1943) is an important Serbian mathematician and in general 

scientist, one of three Poincare’s doctoral students. Paper starts with short citation of 

Element of Mathematical Phenomenology and Phenomenological Mappings published in 

Petrović’s theory. Some of basic elements of mathematical phenomenology as it is 

elements of non-linear-functional transformations of coordinates from one to other 

functional curvilinear coordinate system and are presented in our previous published 

paper. Structural analogy between multi deformable system ais presented. 

Phenomenological approximate mappings on nonlinear phenomena, in local area around 

stationary points or stationary states, are presented. For obtaining approximate differential 

equations and approximate solutions in local area around singular points, linear and non-

liner approximations are used.  Method of local analysis based on phenomenological 

approximate mappings between local linear as well as nonlinear phenomena is power to 

obtain information of all local nonlinear phenomena in the nonlinear dynamics of the 

system for completing kinetic elements for global analysis of the system nonlinear 

dynamics and stability and to use different analogies. 
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I. INTRODUCTION 

Mihailo Petrović (1868-1943) was an important Serbian mathematician and 

scienist, one of three Poincaré’s doctoral students. His professors were world important  

scientists, such as Poincaré (Jules Henri Poincaré (1854 –1912)), Appall (Paul Appell 

(1855 –1930)), Hermite (Charles Hermite (1822 –1901)), Picard (Charles Émile Picard 

(1856 –1941)), Painlevé (Paul Painlevé (1863 –1933)), Bousinesq (Joseph Valentin 

Boussinesq (1842 –1929)) and others. He published the books "Elements of Mathematical 

Phenomenology” [34] in 1911 and “Phenomenological Mapping" [35] in 1933.  

A short presentation of this book was in French, titled by Mecanismes communs aux 

phenomens disparates, Paris 1921 [36]. 

Using elements of mathematical phenomenology and in particular different types of 

analogies, and qualitative, structural and mathematical elements, it is possible to make 

precise or approximate phenomenological mappings of phenomena [35] from global to 

local area of system kinetic parameters, but is necessary to add corresponding conditions 

of restrictions. Also, it is possible to make analogy between two different phenomena in 

two or more systems from disparate areas of science (see references [3-4] and [26]) and 

identify equal or similar properties expressed by elements of mathematical 



phenomenology. 

II. STRUCTURAL ANALOGY 

II.1. INTRODUCTION-COMMENTS 

Let starting with rigid body motion. For moving a rigid body from one position to 

other it is possible to produce by one translation and one pure rotation around a pole. 

A deformation of elementary part around a point of deformable body is produced by 

extension of the line elements drown from one point and by rotation of these line 

elements. And, in results is produced a change of angles between line elements and in 

final results are two deformations: first component - pure change of dimensions of 

deformable body with change volume of deformable body, but no change form and second 

component - pure deformation of deformable body form without change volume of 

deformable body. These deformations are dilatations and sliding (deformation by line 

element rotations). For details see middle column in Table 2. from our Reference [2]). 

Let compare deformation of tangent space of a vector position of a kinetic point in 

curvilinear orthogonal coordinates during motion of this point.  In third part of Reference 

[2] we present that motion of a kinetic point tangent space of their vector position, in 

curvilinear orthogonal coordinate system, produce a pure rotation around fixed or moving 

axes with corresponding angular component velocities followed by deformation of tangent 

space as it is with element of deformable body. In this case when curvilinear coordinates 

are orthogonal no pure deformation of form of tangent space, only change of volume of 

tangent space. (See elements of mathematical phenomenology in Table 1 and Table 2. ig 



Reference [2]).  In the case that curvilinear coordinate system is no orthogonal and change 

s of angles between curvilinear coordinate line appear, when kinetic point moves, two 

component of the pure deformation change of the volume and change of the form of this 

tangent space are produced. Between strain state of deformed body elementary part in 

dynamical sates and deformation of a elementary volume of tangent space of a moving 

kinetic point vector position in discrete configuration, a qualitative analogy is possible to 

identified. This analogy is between strain state of deformable body and strain sate of 

tangent space in curvilinear coordinate system by translation and rotation as in the case of 

rigid body change position and pure deformation extension of line elements in three 

directions with extension of coordinate lines as contour of tangent space element of vector 

position of a kinetic point and change of the angles between these coordinate lines or lines 

elements. 

In previous description is possible to talk about elements of mathematical 

phenomenology and in pure geometry-kinematical system and also by qualitative analogy 

about deformation an elementary element around a point in the deformed deformable 

body. By presented analysis it is visible a structural analogy between mechanisms of 

deformable body deformation and deformation of a tangent space of a moving kinetic 

point position vector (see References [2], [22], [37] and [38]).  

This structural analogy between two mechanisms of deformation is in translation 

and rotation as well as deformation by extension (correspond to translation) and sliding  

(correspond to rotation).  



Structural analogies are visible in different scale in building different fractals by 

iterative dynamics (Julia sets, Maldenbrot sets and other). 

 

II.2. STRUCTURAL ANALOGIES BETWEEN EIGEN TIME FUNCTIONS OF TRANSVERSAL 

VIBRATIONS OF MULTI- DEFORMABLE BODY SYSTEMS 

 

Let consider transversal vibrations of multi-deformable-body system, containing 

coupled, with same contour and boundary conditions, a finite number of deformable 

bodies, coupled by pure elastic, linear or nonlinear, viscoe-elastic or hereditary or 

fractional order discrete continuum layers distributed between deformable bodies (beams, 

or plates, or membranes, or belts).  Discrete continuum layers contain distributed standard 

light elements with corresponding type of constitutive relations (for detail see References 

[9-21], [23-24] and [28-30]). For our consideration of the elements of mathematical 

phenomenology, and, in particular, of structural analogies, for first we need to analyze 

physical structure of models of multi-body system [14].  After that, as second it is 

necessary to list partial differential equations of transversal vibrations of multi-deformable 

bodies coupled by discrete continuum layers containing homogeneous distributed standard 

light fractional order elements. Use multi-body systems, presented in Figure 1, by two 

way of the analysis is possible to indicate more than one type of structural analogy as well 

as other types of analogies, mathematical and qualitative analogies [11]. 
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Figure 1. Models of multi deformable body system: a* two beam visco-elastic system, with beams same 

length and boundary conditions; b* and c* two plate and four plate nonlinear dynamical system, with 

plates same contours and boundary conditions; d* two membrane visco-elastic system, with membranes 

same contours and boundary conditions; e* five circular membrane fractional order systems and f* five 

rectangular membrane fractional order hybrid system, with membranes same contours and boundary 

conditions. 

 

In Figure 1, a numbers of models of multi deformable body system are presented.  

Two beam visco-elastic system presented in Figure 1.a*, with beams [14], same length 

and boundary conditions, are couples by discrete continuum visco-elastic layers 1] In 

Figure 1.b* and c* are visible two plates [28-30] nd a four plate [11]  nonlinear dynamical  

system,  with  plates   same contours and boundary conditions, coupled by discrete 



continuum layers consists of distributed standard light visco-elastic elements. Two 

membrane visco-elastic system, with ideal elastic membranes, same contours and 

boundary conditions, and coupled by discrete light visco-elastic layers is presented in 

Figure 1. d. Five circular membrane fractional order systems and five rectangular 

membrane fractional order hybrid system, with ideal elastic membranes, same contours 

and boundary conditions, coupled by standard light fractional order elements distributed 

between membranes are presented in Figures 1. e* and f*. After analysis, it is possible by 

intuition, without mathematical descriptions indicate present qualitative and structural 

analogies between these all presented multi-body system dynamics [11].  Let’s start with 

analysis of displacements in transversal directions for simple models, and neglecting other 

displacements in axial and lateral directions of beams, plate or membranes. Forces of 

interactions accept that are in transversal directions for simplest models. The system of 

partial fractional order differential equations are listed (see References [14] and in details  

[11]). 

a* Governing partial fractional order differential equations of a hybrid multi 

deformable (three) beam system transversal oscillations on a discrete continuum fracional 

order layer in which beams are coupled by discrete continuum fractional order layers, are 

(see References by Rašković [37-381] and by Hedrih (Stevanović)[11]): 
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where zkkk IEB , 3,2,1k  are flexural rigidity of the beams.   

For complete description of previous hybrid fractional order system it is necessary 

to define  and add crresponding baundary conditions and corresponding initial conditions.  

All three beams are same length and same boundary conditions. This fact  permit us to 

suppose that eigen amplitude functions for all three beams is possible to take in the same 

form  xnW ,  ...4,3,2,1n  and solutions suppose in the following forms:  
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and that distributed excitation along beams lengths are : 
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For presenting structural analogy, we take that external excitations along bems are 

equal to zero, and without losing generality, it is possible to obtain three independent 

eigen main fractional order modes of free vibrations for each eigen time function   )(tT nk  , 

3,2,1k ,  ,....,3,2,1n  corresponding to one of the eigen amplitude function  xnW ,  ...4,3,2,1n  

from infinite set of eigen amplitude described by independent eigen main coordinates 

 sn , 3,2,1,,....,3,2,1  sn  for free vibrations in the following form:  

                    0~~ 22  ttt sntsnsnsnsn  
 D ,             3,2,1,,....,3,2,1  sn                   (4) 

(for details see References [27]). 



Also, for multi (three) beam fractional order system forced vibrations, it is possible 

to obtain three independent forced eigen main fractional order modes of forced vibrations 

for each of time function   )(tT nk , 3,2,1k ,  ,....,3,2,1n  corresponding to one of the eigen 

amplitude function  xnW ,  ...4,3,2,1n  from infinite set of eigen amplitude described by 

independent eigen main coordinates  sm , 3,2,1,,....,3,2,1  sn  for forced vibrations. 

Solution of the fractional order differential equations (4) is known see References by 

Rašković [37-381] and by Hedrih (Stevanović)[11]). 

b* Governing partial fractional order differential equations of a hybrid multi 

deformable (three) plate fractional order system transversal oscillations on a discrete 

continuum fractional order layer in which plates are coupled by discrete continuum 

fractional order layers, are (see References by Rašković [37-381] and by Hedrih 

(Stevanović) [11] and [`6]): 
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where kD  , 3,2,1k   flexural rigidity of the plates.  

For complete description of previous hybrid fractional order system it is necessary 

to define  and add crresponding baundary conditions and corresponding initial conditions.  

All three plates are same boundary contours and same boundary conditions. This fact  



permit us to suppose that eigen amplitude functions for all three plates is possible to take 

in the same form ),( yxWnm ,  ...4,3,2,1,mn   and solutions suppose in the following forms: 
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and that distributed transversal excitation along plate middle surface s are : 
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For presenting structural analogy we take that external excitations along plates are 

equal to zero, and without losing generality, it is possible to obtain three independent 

eigen main fractional order modes of free vibrations for each time function   )(tT nnnk  , 

3,2,1k ,  ...4,3,2,1,mn  corresponding to one of the eigen amplitude function  ),( yxWnm , 

 ...4,3,2,1,mn  from infinite set of eigen amplitude described by independent eigen main 

coordinates  snm , 3,2,1,,....,3,2,1,  smn  for free vibrations in the following form: 
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Formula transformation between egen time functions and eigen main fractional order 

coordinate are: 
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analogous as for corresponding linear system expressions for coordinate transformations. 

Table 1. Qualitative and mathematical analogous nonlinear system energies: a* 

mechanical nonlinear system and b* electrical nonlinear system with two degree of 

free4dom and c* eigen time functions in one eigen amplitude form of double membrane 

oscillations coupled by nonlinear discrete continuum dissipative layers (approximative). 



 

Also, for multi (three) plate fractional order system forced vibrations, it is possible to 

obtain three independent eigen main fractional order modes of forced vibrations for each 

eigen time function   )(tT nnnk , 3,2,1k ,  ...4,3,2,1,mn  corresponding to one of the eigen 

amplitude function ),( yxWnm ,  ...4,3,2,1,mn  from infinite set of eigen amplitude described by 

independent eigen main coordinates  snm , 3,2,1,,....,3,2,1,  smn  for forced vibrations. 

Table 2. Qualitative and mathematical analogous fractional order system energies: a* mechanical 

fractional order system and b* electrical fractional order system and c* * eigen time functions in one 



eigen amplitude form of double membrane oscillations coupled by fractional order discrete continuum 

dissipative layers. 

 

 c*Governing partial fractional order differential equations of a hybrid multi (three) 

deformable membrane  fractional order system transversal oscillations on a discrete 

continuum fractional order layer in which plates are coupled by discrete continuum 



fractional order layers are analogous as in case b*. (see References by Rašković [37-381] 

and by Hedrih (Stevanović) [11] and [24]). 

Comparing listed mathematical descriptions for multi beam system, multi plare 

system and multi membrane system, and obtained results in the form of independent three 

eigen main fractional order modes for each eigen time functions correspond to eigen 

amplitude functions, (2) and (6) it is valid to conclude about present mathematical analogy 

in the basis of the elements of mathematical phenomenology –  similar systems of partial 

fractional differential equations with equal structure; each of eigen time functions is 

composed by tree eigen main fractional order independent time modes in each of three 

corresponding eigen amplitude modes.  

Listed examples, are in the structural analogy in displacements, eigen time 

functions, eigen maun fractional order modes, (4) and (8), as weel as eigen main 

coordinates. This structural nalogy by inductions permit to made conclusions for the 

structural and mathematical analogies  between multi-beam fractional order system 

transversal oscillations, and multi-plate  fractional order system transversal oscillations 

and mlti-membrane fractional order system transversal vibrations with corresponding 

boundary conditions (for detail see References [9-21], [23-24] and [28-30]). 

Next, it is possible to indicate analogy between chain fractional order discrete  

system and generalized coordinates and eigen time functions functions   )(tT nnnk , 

 ...4,3,2,1,mn  of multi-deformable fractional order system vibrations, and also between 

corresponding eigen main fractional order modes in these systems.  Also, a model of 



Double DNA helix chain mechanical model is analogous system with previous defined 

(for detail see References [9-21], [23-24] and [28-30]). 

In Table 1. elements of qualitative and mathematical analogous nonlinear system 

energies: a* for mechanical nonlinear system and b* for electrical nonlinear system with 

two degree of freedom are presented, and also in approximate analogy c* for eigen time 

functions in one eigen amplitude form of double membrane oscillations coupled by non-

linear discrete continuum dissipative layers are presented (see References [2],[5] and [7]). 

In Table 2 elements of mathematical phenomenology for qualitative and 

mathematical analogous fractional order system energies: a* for mechanical fractional 

order system and b* for electrical fractional order system and c* for eigen time functions 

in one eigen amplitude form of double membrane oscillations coupled by fractional order 

discrete continuum dissipative layers are presented (see References [2], [5] and [7]). 

III. PHENOMENOLOGICAL MAPPINGS 

This chapter related to approximation of differential equations and approximation of 

solution around stationary singular point or around some stationary state or around known 

linear or nonlinear solution as a type of phenomenological approximate mappings, useful 

for investigation properties of free or forced regimes or stability of approximate system 

dynamics. Also, using phenomenological approximate mappings is possible to investigate 

stability or appearance singular regimes as it is resonance, dynamical absorption, 

bifurcation in local or global area or local area of some system parameters. 



II.1. Linearization of nonlinear differential equations of a dynamics of the system 

around stationary point or stationary dynamics state is simplest phenomenological 

mapping. In the case that a nonlinear differential equation and nonlinear phenomena are 

substituted by approximate description, using linear differential equation for description of 

corresponding nonlinear by approximate linear phenomena it is valid only in a bounded 

area of kinetic parameters and in a short time interval of system non-linear dynamics. 

Approximation of the solution of differential equation is also phenomenological 

approximate mapping [34-36] of a nonlinear differential equation solution into its 

approximation with corresponding restrictions of valid area of valid and acceptable 

applications. Also, when we take into account approximate differential equations and 

corresponding solution around all singularities of a complex system non-linear dynamics 

and, then obtained differential equations and approximation of the solutions present 

corresponding phenomenological approximate mappings, each around a singular state or 

singular point to corresponding simple linear, or simplest nonlinear oscillators, or 

fractional order oscillators or other type oscillator with one degree of freedom. 

In Table 3, elements of phenomenological approximate mappings of nonlinear differential 

equations of different models of Watt’s regulator non-linear dynamics around singular 

points is presented, examples of linearization or linear approximation around singular 

points of a trigger of coupled three singular points are presented. In same Table, phase 

portraits for three different models of Watt’s regulator non-linear dynamics depending of  

Table 3. Phenomenological approximate mappings of nonlinear differential equation and its approximate 

solution around singular points – Examples of linearization or linear approximation of a Watt’s regulator 

nonlinear differential equation around singular points of a trigger of coupled three singular points 



 

Table 4. Linear and non-linear phenomenological approximate mappings by use approximation of 

differential equations as well as approximations of solution   in local area of system kinetic parameters     



 

 

 



Table 5. Example: Linear and non-linear phenomenological approximate mappings by use 

approximation of differential equation as well as approximations of solution   in local area of system 

kinetic parameters   

 

position of axis of moving mass particle along circle rotation are presented. In all, three  



phase portraits, each of corresponding models, a trigger of coupled three singular points is 

visible for taken system kinetic parameters. Phenomenological approximate mappings of 

nonlinear differential equations and corresponding solutions describing different models 

of Watt’s regulator non-linear dynamics are, also, presented in Table 3. For details see 

References [2].  

In Table 4, in general, linear and non-linear phenomenological approximate 

mappings by use linear and simple nonlinear  approximation of differential equations as 

well as approximations of solution in local area of system kinetic parameters and for 

arbitrary nonlinear system dynamics with one degree of freedom are presented. For 

obtaining approximate solution of obtained non-linear approximation of nonlinear 

differential equation is possible to use Krilov-Bogolyubov-Mitropolski asymptotic method 

of nonlinear mechanics [31-33].  

In Table 5, use an example of a heavy mass particle motion along rotate circle 

around vertical or skew positioned rotation axis, elements of mathematical non-linear 

phenomenology are presented.   Linear and non-linear phenomenological approximate 

mappings by use approximation of differential equation as well as linear and nonlinear 

approximations of solution in local area of system kinetic parameters are presented. 

From obtained elements of mathematical phenomenology as results of phenomenological 

approximate linear and nonlinear mappings, presented in Tables 7, 8  and 9, is visible an 

analogy with a intuitive possible conclusions in step, by step process, present 

mathematically through two or more steps in phenomenological approximate linear or 

nonlinear maps, starting by simple linear maps,  and continue by simplest nonlinear  



phenomenological approximate map and continue with more and more complex nonlinear 

in step by step process. This can be process same as process of numerical iterations of 

numerical analysis and numerical experiment for obtaining solution of nonlinear 

differential equation or to obtain roots of non-linear equation. Then all numerical 

scientific computations can be select as phenomenological approximate maps. 

All elements of mathematical phenomenology of presented models in Tables 3, 4 

and 5  of a heavy mass particle along rotate circle around vertical or skew positioned, 

centric or eccentric axis of circle rotation are possible to use, in analogy, for analyze 

nonlinear dynamic properties and phenomena in dynamics of rigid body coupled rotations 

around two no intersecting axes, and also nonlinear dynamic of a  two step redactor with 

deviation properties of mass distribution in two coupled gear disks. 

 

VI. CONCLUDING REMARKS 

On the basis of the elements of mathematical phenomenology, scientific results in 

World research progress, is possible to summarize and classify into standard dynamical 

models  with analogous phenomena and analogous characteristic parameters as well as 

analogous methods of reseatchs.. 

  Elements of phenomenological precise or approximate mappings on the basis of 

investigation series of similar types of nonlinear phenomena in global or local area of 

system dynamics using qualitative, structural or mathematical analogies and similarities is 

powerful research tools applicable in different area of sciences..   



Then, one of main research task, nowadays, is a project of reduction of models of 

different disparate nature system on the basis of elements of mathematical 

phenomenology and corresponding qualitative, or structural, or mathematical analogies  as 

well as by approximate phenomenological mappings  around singular dynamic states. 

Integration knowledge on the basis of the elements of mathematical phenomenology will 

be basic knowledge kernel for future education of new university generations of students 

and researchers with larger scientific culture. 

  Task of investigation of different types of analogies is close with large knowledge 

about models of static and dynamics of the systems from different area of sciences. Also, 

for identification of analogous kinetic parameters in disparate nature system dynamics is 

coupled with the capability to have a high level of intuition and intuitive recognition 

similar models and methods on the basis of identification of analogies.  

Author believe that this very important task, in present time, is actual for research 

and obtained results would lead to a systematic basis analogous models and methods, that 

can computerize as expert system must require each researcher. Expert base of qualitative, 

structural or mathematical or logic analogous models would be very useful to every 

researcher, as well as to the students to develop their research capabilities and intuitive 

thinking. 

These days appear series of journals and articles with analogous research results 

without knowledge, that analogous results exists long time in other area of sconces. Than, 

it is necessary an analysis and transfer of knowledge from one to other different area of 

sciences. 



Aim of two papers, present “Elements of mathematical phenomenology: II. 

Phenomenological mapping” and previous “Elements of mathematical phenomenology: I. 

Mathematical and Qualitative analogies”, based on Petrović’s theory contain the 

interdisciplinary contents consisting of author’s original research results in applications 

idea and theory presented by Mihailo Petrovic in the form of a review articles. The papers  

present some of elements of mathematical phenomenology and phenomenological 

mappings in investigation of disparate nature system dynamics use some singular 

examples in subjective choose bounder by author’s previous published suitable research 

results.  
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