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Abstract 

Paper starts with short description of Element of Mathematical Phenomenology and 

Phenomenological Mappings published in Petrović’s theory. The biographical data of 

Mihailo Petrović (1868-1943) is presented. Petrović was a important Serbian 

mathematician, one of three Poincare’s doctoral students. Some of basic elements of 

mathematical phenomenology in mechanics are elements of non-linear-functional 

transformations of coordinates from one to other functional curvilinear coordinate system. 

Some of these elements, as it is basic vectors of tangent space of kinetic point vector 

position and their changes (velocity of their magnitude extensions and component angular 

velocities of rotations), are presented in different functional coordinate systems. Mihailo 

Petrović’s theory contains two types of analogies: mathematical and qualitative, and in 

this paper third type - structural analogy is described. Taking into account large possibility 

for applications of all three types of analogies, numerous original examples are presented 
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using, between other, fractional system dynamics with one degree of freedom, finite 

number of degrees of freedom as well as multi-body discrete continuum hybrid fractional 

order system dynamics. Mathematical analogies between vector models in local area of 

stress state, strain stare of the point in stressed and deformed deformable body as well as 

with vector model of the mass inertia moment state at point of rigid body, used mass 

inertia moment vectors coupled for pole and axis, are presented, also. 

A number of theorems of energy fractional order dissipation presented in corresponding 

Tables, also. It is shown that applications of qualitative, structural and mathematical 

analogies in analysis of fractional order modes appear in analogous mechanical, electrical 

and biological fractional order chains, and that is very power, suitable and useful tools to 

reduce research models to corresponding minimal numbers, and, in same time, develop 

power of analysis use mathematical and qualitative analogies. 

 

Keywords: Mihailo Petrović (1868-1943), mathematical phenomenology, fractional order 

system, generalized functions of fractional order dissipation of system energy, fractional 

order modes, theorem mass moment vectors, vector model, stress; strain. 

 

I. INTRODUCTION 

Let us start with short description of Element of Mathematical Phenomenology [40] and 

Phenomenological Mappings [41] published in Petrović’s theory and a few biographical 

data of Mihailo Petrović. Mihailo Petrović (1868-1943) was a important  Serbian 

mathematician, one of three Poincaré’s doctoral students. His professors were world 



important scientists, such as Poincaré (Jules Henri Poincaré (1854 –1912)), Appall (Paul 

Appell (1855 –1930)), Hermite (Charles Hermite (1822 –1901)), Picard (Charles Émile 

Picard (1856 –1941)), Painlevé (Paul Painlevé (1863 –1933)), Bousinesq (Joseph Valentin 

Boussinesq (1842 –1929)) and others. He published the books "Elements of Mathematical 

Phenomenology” [40] in 1911 and “Phenomenological Mapping" [41] in 1933. Evaluating 

Petrović’s Elements of Mathematical Phenomenology, Milutin Milanković (1879 - 1958) 

(author of world known and numerous cited “Canon of Sun insulation”) said that this 

book is very important, but, in time of publishing, understandable only to two scientists in 

Serbia, and in my opinion, also, two in America–Mihailo Pupin (1858 -1935) and Nikola 

Tesla (1856 – 1943), because the book was published in Serbian Language. A short 

presentation of this book was in French [42]. In his book [40], Petrović studied some 

elements of multi-dimensional geometry, coupling between mechanisms and manifestation 

of phenomena, transformation of equations for phenomenon in holonomic systems, 

potential phenomena, presented and analyzed systems of Appel’s and Lagrange’s 

equations, actions of discontinuous causes, the events of occurrence as a result of its 

composition mechanisms, quantitative and qualitative images of appearances 

(phenomenon), the composition and patterns of phenomenological mechanisms, 

phenomenological analogies, mathematical analogies and qualitative analogy. 

A short presentation of this book was in French, titled by Mecanismes communs aux 

phenomens disparates, Paris 1921 [42]. 

Petrović presented properties of the theory of the viva forces and their 

phenomenological consequences. He pointed out that there are many differences between 



pure geometrical and dynamical properties of a system. As pioneer in Mathematical 

Phenomenology and Phenomenological Mapping, Petrović and Petrović's scientific work 

was inspiration for this paper. Nowadays, numerous mathematicians working in different 

areas of sciences are using mathematical formalism. Mathematical formalism in technical 

sciences is very dangerous without knowledge of forces and energy changes and their 

interactions.  

Using elements of mathematical phenomenology and in particular different types of 

analogies, qualitative, structural and mathematical elements, it is possible to make precise 

or approximate phenomenological mappings of phenomena [40] from global to local area 

of system kinetic parameters, but is necessary to add corresponding conditions of 

restrictions. Also, it is possible to make analogy between two different phenomena in two 

or more systems from disparate areas of science and identify equal or similar properties 

expressed by elements of mathematical phenomenology. 

It is possible to transfer knowledge from one area of science to another, integrate 

research and create a basic kernel of science for education of next generations of 

civilization using minimum energy and time of study. 

II. ABSTRACTION OF REAL SYSTEM TO THE PHYSICAL, CHEMICAL OR BIOLOGICAL AND 

MATHEMATICAL MODEL 

Abstraction from real system dynamics to the corresponding model usually, with 

some suppositions and valuable approximations as well as with numerous conditions of 

restrictions in applications, gives different models with non-linear and corresponding 

simple linear dynamics good satisfying description of real system behaviors.  A present 



day, linear models, as well as linearized models of different real dynamics abstractions are 

acceptable for use in numerous applications. Corresponding mathematical descriptions of 

linear system dynamics are very good and applicable for investigations and analysis of a 

local dynamics of real system in a constrained area of kinetic parameters. But, when 

questions are about some systems with complex phenomena linear descriptions are not 

satisfying and then appear numerous problems. First main problem is that analytical 

methods for solving problems of mathematical descriptions by non-linear algebra 

equations, nonlinear ordinary differential equations, nonlinear partial differential 

equations or fractional order differential equations, integro-differential equations and 

others, in analytical form are not founded. 

Power computers and fast developments of numerous numerical methods opened a 

large field for obtaining numerous data of possible non-linear phenomena, on the level of 

numerous numerical experiments with numerical data, but results are approximate 

particular numerical solutions or multi-parametric series of particular approximate 

solutions. On the basis of the numerous approximate particular solutions obtained by 

numerical experiments are possible to obtain some qualitative conclusions. But, at same 

time, questions about errors in numerical approximations and precisions of qualitative 

conclusions appear. 

In present day, it is necessary that scientists pay attentions to analytical methods for 

investigation non-linear phenomena and for obtaining analytical tools for conclusions of 

qualitative properties of non-linear phenomena and compare obtained results in results 

obtained in different area of sciences and to identified analogies between these 



results,qualitative, structural and mathematical and possibilities of phenomenological 

mappings between same types of non-linear phenomena in dynamics of physically or bio-

dynamical  disparate systems (see References [2,3] and [30]).  

 

III.  ELEMENTS OF MATHEMATICAL PHENOMENOLOGY IN NON-LINEAR 

TRANSFORMATION OF COORDINATES 

III.1. ELEMENTS OF MATHEMATICAL PHENOMENOLOGY IN NON-LINEAR 

TRANSFORMATION OF COORDINATES. 

Let’s consider two systems of variables iq  and iq  with known non-linear relation 

between first and second in the following forms:  qqq ii   or  qqq ii  . Last two relations 

are inverse one to other. Last relations satisfy condition, that functional determinate 

(Jacobean) for each of these is different from zero,  
0






k

i

q

qq
J  and  

0





k

i

q

qq
J . 

For the case of linear, affine transformation, functional determinant (Jacobean) is 

determinant of transformation matrix in the form consta
y

x j
ii

j





A , but is constant. That is 

a special case of general functional (non-linear, generalized) transformation. For the case 

of the general functional (non-linear, generalized) transformation, it is possible to write 

the following relations (see References [45-48]):  

  k

k

i
i dq

q

qq
qd




   or   

  k

k

i
i qd

q

qq
dq




              (1) 

For the case of general, functional (non-linear, generalized) transformation, straight 

lines mapped into curvilinear lines and only differential elements of curvilinear lines are 



mapped by affine mapping [46,48,17]. It is then possible to make a conclusion: in results 

of nonlinear mapping of straight lines curvilinear lines appear.  For detail about difference 

between affine (linear) and nonlinear transformation of coordinates from one to others 

see References [46], [48] and [17]. 

III.2. NON-LINEAR TRANSFORMATIONS OF COORDINATES AND BASIC VECTORS IN 

GENERALIZED FUNCTIONAL TANGENT SPACES OF POSITION VECTOR OF A KINEMATIC 

POINT 

Let’s consider, in curvilinear coordinate system, with coordinates denoted by iq ,  

for difference of linear, affine coordinates denoted by ix , corresponding vectors  

  
ii

q

r
qg









, Ni ,...,3,2,1                     (2) 

which are defined as basic vectors of curvilinear generalized functional  coordinate system 

of the tangent space of kinetic point position vector  qr


, with source pole in end of 

position vector at moving kinetic point  321 ,, qqqN . By using these basic vectors  
ii

q

r
qg









 

it is possible to define corresponding coordinate system with curvilinear coordinates iq , 

but with source pole in source pole of position vector  qr


. Then it is visible that 

curvilinear coordinates (parameters) 
iq  are not coordinates of position vector  qr


, and as 

coordinates of position vector  qr


 in curvilinear coordinate system are introduced in the 

form  qr i  as its contra-variant coordinates. It is clear that these contra-variant coordinates 

 qr i  of position vector are non-linear functions of curvilinear coordinates (parameters) iq , 

and also that  basic vectors of corresponding curvilinear coordinate system are non-linear 



functions of curvilinear coordinates (parameters) iq  (See Figure 1.a* and 1.b*, and for 

details see References [36], [46], [48], [17] and [19]).   
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      Figure 1. Presentation of the position vector of a kinetic point in different 

positions in three dimensional space, with corresponding basic vectors  ig 


 of position 

vector   q


 tangent space (without index    denotation of the order of point); а* in 

arbitrary generalized curvilinear orthogonal coordinates; b*in polar cylindrical coordinate 

system with orthogonal curvilinear coordinates. 

 

III.3. ANGULAR VELOCITY AND INTENSITY CHANGE OF BASIC VECTORS OF POSITION 

VECTOR TANGENT SPACE OF A MATERIAL SYSTEM KINETIC POINT 

 

In real three dimensional coordinate system, position vectors of the material–kinetic 

points of a material system constrained by geometrical holonomic stationary and 

nonstationary real constraints (see References [36], [46], [48], [17] and [19]), are denoted 



by    q


, N,...,3,2,1  and each as functions of generalized curvilinear coordinates  
iq  , 

N,...,3,2,1 , 3,2,1i , where N  is the total number of material system mass particles.  Basic 

vectors of each kinetic point position vector tangent space are denoted by  ig 


, 

N,...,3,2,1 , 3,2,1i :  (see Figure 1), and can be expressed in the following form::  

 
 

 
ii

q
g

















, N,...,3,2,1 ,  3,2,1i                     (3) 

 All basic vectors (3) are functions of the time depending curvilinear coordinates 

(parameters)    tq
i

 , which are nonlinear function of time t . 

 

III.4. CHANGE OF BASIC VECTORS OF POSITION VECTOR TANGENT SPACE OF KINETIC 

POINT IN THREE DIMENSIONAL SPACE EACH IN CURVILINEAR COORDINATE SYSTEM 

 

Without losing generality, let’s consider and determine expressions for change of 

basic vectors  ig 


, N,...,3,2,1 , 3,2,1i  of position vector  


, N,...,3,2,1 in three 

dimensional tangent space in curvilinear coordinate system for one kinetic point  of 

material system.  

Let’s suppose that each position vector tangent space of each kinetic point 

        321 ,,  qqqN , is three dimensional and defined in orthogonal curvilinear coordinates  
iq  , 

N,...,3,2,1 , 3,2,1i . Then, let’s to separate in expressions of the corresponding derivatives 

 

dt

gd i



, N,...,3,2,1 , 3,2,1i  of the basic vectors  ig 


, N,...,3,2,1 , 3,2,1i  of position vector  



 


, N,...,3,2,1  tangent space terms which correspond to terms of the relative derivatives 

 

*

1g


,  

*

2g


 and   

*

3g


, N,...,3,2,1  (see References [46], [48],  [39] [17] and [19].). 
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Figure 2. Presentation of the position vector of a kinetic point in different positions in 

three dimensional space, with corresponding basic vectors   ig 


 of position vector   q


 

tangent space (without index    denotation of the order of point); а* in spherical 

coordinate system with orthogonal curvilinear coordinates; b* in three dimensional three 

parabolic coordinate system with orthogonal curvilinear coordinates. 

 

These vector terms,  

*

1g


,  

*

2g


 and  

*

3g


 represent vectors of relative velocity of 

basic vectors extensions and it is possible to express in scalar forms as relative velocity of 

magnitude dilatation of each of three basic vectors of each position vector tangent space of 

each kinetic point in following forms (for detail see References [25,26] and [16,17]):. 

 
 

 
            31
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 
 

 
            33
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dtg
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

 , N,...,3,2,1 . 

Other terms in each of the expressions of the corresponding derivatives  

dt

gd i



, N,...,3,2,1 , 

3,2,1i  of the basic vectors  ig 


, N,...,3,2,1 , 3,2,1i  of position vector   


, N,...,3,2,1  

tangent space are terms which represent the vector expressions of vector product between 

angular velocity  ip 


, N,...,3,2,1 , 3,2,1i  of corresponding basic vector rotation and same 

basic vector  ig 


, N,...,3,2,1 , 3,2,1i . From these terms it is easier to express angular 

velocities of the basic vectors of position vector tangent space during motion of the 

corresponding kinetic point. These expressions are in the following forms: 
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
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In previous, presented expressions, denotations  1p


,   2p


 and  3p


 present 

angular velocities of the basic vectors of a position vector tangent space during kinetic 

material point motion. In previous expressions (5),  
k

ij , N,...,3,2,1 , 3,2,1,, kji  are 

Christoffel’s symbols of the second kind, and   kij, , N,...,3,2,1 , 3,2,1,, kji  Christoffel’s 

symbols of the first kind in corresponding curvilinear coordinate system of vector position 

tangent space of corresponding material kinetic point.  

Table 1. Examples of the change of basic vectors of the position vector tangent space during kinetic 

point motion expressed in different curvilinear coordinate systems 



 
 

These  Christoffel’s symbols, first and second kind, are expressed by  

corresponding covariant    qg ij , N,...,3,2,1 , 3,2,1,, kji  or contra-variant   qg kl
 , 

N,...,3,2,1 , 3,2,1,, kji metric tensor of corresponding position vector tangent space. 

In Table 1, elements of mathematical phenomenology for three examples of the 

change of basic vectors of the position vector tangent space during kinetic point motion 

are presented in three different curvilinear coordinate systems: polar cylindrical, spherical 

and three-dimensional three-parabolic curvilinear coordinate systems. 

For second example, changes of basic vectors  ig 


, N,...,3,2,1 , 3,2,1,, kji  in spherical  

curvilinear coordinate system of corresponding vector position tangent space with 



curvilinear coordinates 
       ,, , N,...,3,2,1  of kinetic point 

 N , N,...,3,2,1  in spherical 

system (see Figure 2.a*) defined as 
          ,,N , N,...,3,2,1 , and with its corresponding 

position defined by position vector           ,,


, N,...,3,2,1  are determined. Using 

previous considerations and derived expressions, expressions of the velocity of basic 

vector extensions  



ig 


, N,...,3,2,1 , 3,2,1i  and  relative velocities  i  of basic vector 

extensions are presented in Table 1. Also, angular velocities of the rotations of each of the 

basic vectors  ig 


, N,...,3,2,1 , 3,2,1,, kji  in spherical curvilinear coordinate system of 

corresponding vector position tangent space are determined from vector products (5) in 

the form (for detail see References [25,26] and [16,17]): 

           
 

   
            








 





 






 cos

1
sin

cos
0 gggkcPPP









 N,...,3,2,1 , 3,2,1i .                 (6) 

  Each of sets of three basic vectors  ig 


, N,...,3,2,1 , 3,2,1,, kji  in spherical 

curvilinear coordinate system of corresponding vector position tangent space is orthogonal 

in corresponding set of three basic vectors and kip these orthogonal angles during the 

kinetic point motions, and rotates with same angular velocities, but intensity of the basic 

vectors are changeable during the kinetic point motions. 

III.5. SOME CONCLUDING COMMENTS 

In our consideration, in short presentation, the main difference between linear and 

nonlinear transformations, as a fundamental and the basic elements of mathematical 

phenomenology are pointed out. By using analysis of properties and descriptions of 



affine-linear  and functional-nonlinear mappings, we show  fundamental difference 

between affine (linear) and functional nonlinear - curvilinear coordinate systems with  

curvilinear coordinates as well as curvilinear coordinate system lines and curved 

coordinate system surfaces.  

Formulas of coordinate transformations as well as main difference in properties of 

the basic vectors of position vector tangent space in affine space with linear coordinate 

system and corresponding basic vectors in generalized functional coordinate system with 

curvilinear coordinates are important for investigations of nonlinear dynamics of different 

dynamical systems.  

Next, we show that extension of basic vectors magnitudes appear, in curvilinear 

coordinate systems, along kinetic point motion and expressions of velocities of the basic 

vector extensions are functions of kinetic point position in motion.  Also, we show that 

rotation of the basic vectors orientations appear, in curvilinear coordinate systems, along 

kinetic point motion and expressions of angular velocities of basic vector rotations are 

also functions of kinetic point position in motion.   

Obtained angular velocities, of a set of three basic vectors of position vector tangent 

space during kinetic point motion, permit and opens possibility to consider motion of this 

kinetic point, in tangent space, as a complex motion consisting of a relative motion along 

curvilinear coordinate line and a supported rotation motion. In three dimensional space, 

orthogonal and curvilinear coordinate system, it is possible to discuss Coriolis’s 

acceleartion and inertia force of kinetic point. 



Also, the obtained results, are very important, for consideration of motion of material 

system with multiple degrees of freedom, expressed by independant generalized 

curvilinear coordinates in three dimensional coordinate systems of position vector tangent 

spaces for each of the kinetic points and passing to multi dimensional fictive tangent space 

of whole material system. Then, notions about exteded tangent space, but of a mechanical 

system are introduced (for detail see References [25,26] and [16,17]). 

IV. ANALOGIES 

The Petrović’s theory [40-42] in the sixth chapter entitled: Phenomenological 

analogies, two types of analogies are listed: Mathematical analogies and qualitative 

analogy. In our opinion and present scientific knowledge is necessary to add third type of 

analogy: structural analogy. 

Let’s, in this chapter, to present three types of these analogies, using presentations 

and analysis of the elements of corresponding type analogous systems. 

 

IV.1. QUALITATIVE ANALOGIES 

Starting with explanation about qualitative analogy, we take into account non-linear 

phenomena as it is trigger of coupled singularities containing three singular points, one no 

stable saddle type point and two stable centre type point with a homoclinic phase 

trajectory in the form of number “eight” (see References [26] and [28-38], and Figure 3.a* 

and c*). Each nonlinear system with cubic nonlinearity in its phase portrait contains this 

qualitative non-linear set named a trigger of coupled singularities [28,29]. This is one 

loop with self-cross section. Indication, that two physical disparate systems, in phase 



plane contain non-linear object, as it is a trigger of coupled singularities, permit to made 

conclusion about present qualitative analogy in local or global area of kinetic parameters 

in system non-linear dynamics. Then, it is possible qualitative knowledge of one of these 

systems behavior and properties transfer to other, taking into consideration and analysis 

physical, biological or other type of physical properties and system parameters. 

Knowledge that system in phase plane contain trigger of couples singularities 

directed us to made conclusion that in this system with changes of a parameter, named as 

bifurcation parameter, is possible disappearance of a trigger of coupled singularities and 

appearance of bifurcation a stable singular point into tree singular points – trigger of 

coupled singularities with a no stable singular point and two stable singular points. Also, 

in the phase portrait is possible to indicate three (or four) types of phase trajectories (see 

Figure 3. a* and c*): * closed around one stable singular centre type point, correspond to 

periodic behavior of the system; * closed around all three  singular points –containing 

inside trigger of coupled singularities, correspond to double periodic behavior of the 

system; * closed around two stable singular centre type points, passing through no stable 

saddle type singular point as self-cross section point, correspond to periodic or double 

periodic behavior of the system; and * closed - open around all three singular points –

containing inside trigger of coupled singularities, and passing through two no stable 

saddle type singular points, correspond to double periodic or no periodic behavior of the 

system. 
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Figure 3. Motion of the heavy material particle along a circle, which rotates about a 

fixed axis: Simple model of the nonlinear dynamics. a* Phase portrait of basic model 

nonlinear dynamics for the vertical axis of circle rotation and for eccentricity different to 

zero and for b* the mechanisms of the Watt’s regulator; c* Transformation (layering) of 

homoclinic phase trajectories in phase portrait of basic model nonlinear dynamics for the 

vertical axis of circle rotation and for eccentricity equal to zero. 

 

A qualitative analogy between local phenomena of trigger of coupled singularities 

and bifurcation in non-linear dynamics of simple system presented in Figure 3 and in 

corresponding local non-linear phenomena in dynamics of a planetary geared system with 

debtless in gravitation field is evident. For detail see References [7, 18, 29] and system of 

heavy gyro-rotor with coupled rotation around no intersecting axes.[33-36,]. In the system 

containing trigger of coupled singularities is present a sensitive dependence of initial 

conditions around no stable saddle type homoclinic singular point of this trigger. If words 

are about non-linear dynamical system with one degree of freedom loaded by single 

frequency external excitation, in the system with trigger of coupled singularities is 

possible to conclude that it is possible to appear different types of forced regimes, and 

between the chaotic like and stochastic like nonlinear dynamics. 

 



Second example of qualitative analogous phenomena in qualitative analogous 

systems is non-linear object named as trigger of coupled one side singular points [19]. 

This non-linear object appear in the system dynamics with Amontons-Coulomb’s type 

friction and alternations of friction force directions with changes of the direction of 

velocity. As examples of the systems with qualitative analogous system behavior are 

oscillator along straight rough line and motion of a heavy mass particle along curvilinear 

rough line (circle, parabola, cycloid or arbitrary curvilinear line) in vertical plane (see 

References [38] and [37]). If curvilinear lines rotate, then by use qualitative analogy is 

possible to conclude that around all singular points in a trigger of coupled singularities in 

motion of a heavy mass particle along rotate curvilinear rough line with Coulomb’s type 

friction appear trigger of coupled one side singular points. 

IV.2.  MATHEMATICAL  ANALOGIES 

To explain some of possible types of mathematical analogies we use some vector 

models of different static or dynamic state of the systems. 

 

IV.2.1. MATHEMATICAL ANALOGIES BETWEEN VECTOR MODELS OF CORRESPONDING 

SYSTEM STATE 

 In dynamics of rigid body rotation is possible to use mass moment vector coupled 

for axis and pole introduces and defined first in 1991 by author and presented in short at 

IUTAM ICTAM 1992, in [4]. Important is vector  O

n



J   of mass inertia moment coupled for 



the axis of rotation passing through fixed pole (shaft bearing) (for detail see References 

[5-10], [18-19], [22],  [24] and [35-36]). 

In signal processing, cross-correlation is a measure of similarity of two waveforms 

as a function of a time-lag applied to one of them. This is also known as a sliding dot 

product or sliding inner-product. It is commonly used for searching a long signal for a 

shorter, known feature. It has applications in pattern recognition, single particle analysis, 

electron homographic averaging, cryptanalysis, and neurophysiology. 

For two continuous functions  tf  and  tg , the cross-correlation is defined as: 

            dttgtftgtf
def

gf 




  *,K                (7) 

where  tf *  denotes the complex conjugate function of function  tf  and t is the time 

lag. Let we have three continuous time wave processes   tx ,  ty  and  tz  in three one 

direction and add to each of these one of the unit vectors n

, v


 and w


  (or in three 

orthogonal directions oriented by three orthogonal unit vectors n


, v


 and w


), we can 

define a vector 
  t

nK


 of the cross-correlations at moment t : 

 
        wvn wnvnnn

t

n


 ,,, KKK K                 (8) 

Table 2. The mathematical analogies between vector models of stress state model, strain 

state model and mass inertia moment state model. 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Waveforms
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Single_particle_analysis
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Neurophysiology
http://en.wikipedia.org/wiki/Complex_conjugate


 



            

a*           b*      c* 

Figure 4. Three mathematical analogies between vector models of stress state model of a 

stressed body, strain state model of a deformed deformable body and mass inertia state 

model of a rigid body. 

 

of which coordinates are cross correlation functions between processes  tx  and   tx ,  ty  

and  tz . Autocorrelation function is in the following form: 

            dttxtxtxtx
def

nn 




  *,K  .                   (9) 

Matrix K  of tensor state of cross - correlation of three collinear or orthogonal continuous 

time wave processes   tx ,  ty  and  tz is in the form: 

 
     
     
     


























wwwvwn

vwvvvn

nwnvnn

,,,

,,,

,,,

KKK

KKK

KKK

K             (10) 

Eigen numbers of previous matrix present extreme values of cross correlations and also 

eigen main cross-correlation directions of  three orthogonal continuous time wave 

processes   tx ,  ty  and  tz , and, also is possible to find modal matrix for transformation  

of matrix  K  tensor state of cross – correlation. 

 



Vector models of stress state and strain state in the loaded and deformed of a deformable 

body is known from world references in theory of elasticity (for source see following 

Reference [9] and [48]). These models are mathematically analogous. Also, is very easy to 

indicate mathematical analogy between vector models of cross section state of three wave 

processes and one of the vector models of stress state model, strain state model or mass 

inertia moment state model. Also, is possible to indicate analogy if these three wave 

processes  tx ,  ty  and  tz  are stochastic processes. 

The mathematical analogies between vector models of stress state model of a 

stressed body, strain state model of a deformed deformable body and mass inertia moment 

state model of a rigid body at the point are visible in Table 2 and Figure 4. 

In presented examples, elements of mathematical phenomenology–simplest 

mathematical analogy appear as eigen numbers of a matrix, which correspond to an set of 

three analogous main normal stresses, or eigen main strains, or eigen main axial mass 

inertia moments or main moments of stochastic processes correspond to one point. 

Next elements of mathematical phenomenology-in the form of mathematical analogies,  

appear as eigen principal directions defined three orthogonal axes of coordinate system in 

which expressed matrix appears as diagonal matrix with no zero elements only at 

diagonal, equal to corresponding eigen numbers of a corresponding matrix in arbitrary 

coordinate system. These eigen principal directions are analogous to main stress 

directions, or main strain directions or principal inertia axes of mass inertia moments or 

principal moments of stochastic process in a point. Vector of principal total stress is 



collinear to unit vector orthogonal to the main plane, vector of main line element relative 

deformation is collinear with line element main direction in point,  vector of mass inertia 

moment for main inertia direction is collinear with this direction (and rigid body is ideally 

balanced).  

By use one mathematical analogies, vector or tensor or matrix model is possible to 

use for identification a qualitative analogy between stress state, strain state, mass inertia 

moment state or cross-correlation state of three wave orthogonal processes or the 

stochastic process, using an analogy between corresponding parameters which define 

numerous analogous physically disparate states, on the basis of mathematical or 

qualitative analogies.  

IV.2.2. MATHEMATICAL ANALOGIES BETWEEN MECHANICAL AND ELECTRICAL SYSTEM 

DYNAMICS. 

Large known mathematical analogies are analogies between mechanical and 

electrical system dynamics, usually named as electromechanical analogies.  

This part is necessary to formulate using knowledge from theory of mechanical and 

electric oscillations. Simplest explanation is by transfer signals through mechanical and 

electrical chains and about filter properties in transfer of signals.  

IV.2.2.1. In Figure 5, four systems with ideal elastic constraints and with finite number of 

degrees of freedom of system in mathematical analogies are presented: a* Mechanical 

chain system with ideal elastic springs between mass particles; b* Torsion oscillatory 

system in the form of a ideal elastic shaft carrying by finite number of rigid disks; c* 

Multi-pendulum system coupled by ideal elastic springs; d* The electric chain containing 



coupled finite number of electric circles (for details see References [44], [45] and [30]).  

These systems in Figure 5 are defined as conservative and all vibrate with constant total 

mechanical energy (a*, b* and c*) or total electric energy (d*) in corresponding analogous 

free regimes. For the case that all these systems are linear, in these mathematically 

analogous regimes exist corresponding numbers of eigen main modes with same numbers 

of eigen circular frequencies.  
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  Figure 5.  Four systems with ideal elastic constraints and with finite number of degrees 

of freedom of system in mathematical analogies: a* Mechanical chain system with ideal 

elastic springs; b* Torsion oscillatory system in the form of a ideal elastic shaft carrying 

by finite number of rigid disks; c* Multi-pendulum system coupled by ideal elastic 

springs; d* The electric chain containing coupled finite number of electric circles.  

In the case that these systems are loaded by external single frequency corresponding 

forces of couple, in these systems appear corresponding analogous forced regimes.  

All four mathematically analogous systems are defined as conservative and loaded by the 

external single frequency excitations. System of differential equations in matrix form of 

these four systems in forced regimes, presented in Figure 5, is presented in Reference 

[30].  



 

Table 3. Mathematical analogy between kinetic and material parameters of electrical and 

mechanical linear oscillatory systems with one degree of freedom 

 

 

Using analogy between forced regimes defined by analogous matrix differential equations 

for forced regimes in the systems presented in Figure 5, it is easier to analyze possible 

appearances of resonances or alternatively dynamical absorptions, which occur under 

corresponding relations between the eigen circular frequencies and external force 

frequency, as well as other system inertia or elastic or quasi-elastic or electric coefficients 

of the corresponding system. Detailed analysis of mathematical analogies between these 

system dynamics is presented by detail in new Reference [30]. In Table 3 mathematical 

analogy between kinetic and material parameters of electrical and mechanical linear 

oscillatory systems with one degree of freedom is presented. 



IV.2.2.2. In Figure 6, two pairs of the fractional order systems with finite number of 

degrees of freedom of system in mathematical analogies are presented: Mechanical 

fractional order chain system with standard light fractional order coupling elements 

between mass particles and with (a*) three and (c*) finite number (eleventh) of degrees of 

freedom; b* The electric fractional order chain containing coupled (a*) three and (c*) 

finite (eleventh) number of electric circles with corresponding number of fractional order 

resistors. All these listed systems are no conservative and with fractional order dissipation 

of the corresponding system energy – total mechanical or total electrical energy fractional 

order dissipation along system dynamics. 

Standard light fractional order elements [1], [21] are introduced, as coupling 

elements between mass particles of fractional order mechanical systems, presented in 

Figure 6. a* and c*. These standard light fractional order elements are defined by 

constitutive relation between force and elongation use a term with fractional order 

derivative. Also, in electrical chain fractional order system the new standard fractional 

order resistors or capacitors are introduced with constitutive relations between electric 

voltage and electric charge by fractional order derivatives (for detail see Reference [21], 

[16], [20] and [21]). 

Standard light fractional order capacitive – resistive element   is possible defined by 

following constitutive voltage-electricity charge relations [21]:  

       








 tqRtq
C

tV t


D

0

1

                 
(15) 

          

where  tV  

is electrical voltage,   tq  electricity charge, electric currency is      tqti    or 



   
t

dttitq
0  

and   R  is coefficient of fractional order dissipation thermal energy in the 

fractional order dissipative capacitive –resistive element  and  10  .  
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Figure 6. Two analogous fractional order system oscillations: fractional order mechanical 

chain fixed at left end and free at right end and with three a* (eleventh c*) degrees of 

freedom and fractional order electrical chain with three b* (d* eleventh) coupled electrical 

circuit and eleventh degree of freedom. 
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For 0  voltage is: 

      tq
CC

tqR
C

tV
00

0

0

111



 











 .   
0

0

1



 



C

R

 
 or    

0

0

1



 



R

C

 

additional capacity of capacitor.  

 



Table 4. Mathematical analogy between kinetic and material parameters of FO electrical 

and FO mechanical oscillators, for electrical resistance element and FO inertia less 

mechanical visco-elastic element, 10   

 

In Tables 4, we present the analogous kinetic parameters of electrical and 

mechanical fractional order systems. 

In Table 5, the qualitative and mathematical analogies between two fractional order 

systems with one degree of freedom are presented.   In Table 5.a*   kinetic parameters   of  

Table 5 Qualitative and mathematical analogies between two fractional order systems 

with one degree of freedom: a* mechanical fractional order oscillator and b* electrical 

fractional order oscillator. 



 
 

mechanical fractional order oscillator are presented and in Table 5.b* mathematical and 

qualitative analogous kinetic parameters of electrical fractional order oscillator are 

presented. This Table contains analogies between corresponding kinetic and potential 

energies, and also generalized functions of fractional order dissipation of total energy of 

the system fractional order dynamics (see References of theoretical basis of fractional 

order system dynamics with finite number of degrees of freedom in mechanical and 

electrical systems [21] and [16]; see also details of elements of pure mathematical 

phenomenology about fractional order differential equations and solution methods  [3] and 



[23]; and see also elements of mathematical phenomenology in applications in 

engineering and bio-dynamical fractional order system dynamics [3], [20\ and [32]). 

 

Table 6. Qualitative and mathematical analogous fractional order system energies: a* 

mechanical fractional order system and b* electrical fractional order system, with finite 

number of degrees of freedom. 

 

In Table 6, the qualitative and mathematical analogies between two fractional order 

systems with finite number of degrees of freedom are presented. In Table 5. a* kinetic 

parameters of mechanical fractional order oscillator, with finite number of degrees of  

 



Table 7. Analogies between matrix fractional order differential equations of FO dynamics 

of electrical and mechanical chain systems with finite number of loops and of dof, 

respectively. Their eigen FO modes, eigen characteristic numbers and corresponding 

constitutive relations of inertia less standard and FO electrical resistor-capacitive element 

and FO mechanical visco-eelastic element included in the corresponding analogous 

systems: 10  . Phenomenological mapping between eigen FO modes of electrical and 

mechanical chains 

 

freedom, are presented and in Table 6.b* mathematical and qualitative analogous kinetic 

parameters of electrical fractional order oscillator, finite number of degrees of freedom, 

are presented. This Table contains analogies between corresponding kinetic and potential 

energies, and also generalized functions of fractional order dissipation of total energy of 



the system fractional order dynamics. In last right hand side column theorems of total 

system energy degradation are presented for all system and for each of the fractional order 

mode (for detail sees References [11-15 and [21]). 

In Table 7, analogies between matrix fractional order differential equations of 

fractional order dynamics of electrical and mechanical chain systems with finite number 

of loops and of degree of freedom, respectively. Their eigen FO modes, eigen 

characteristic numbers and corresponding constitutive relations of inertia less standard and 

FO electrical resistor-capacitive element and FO mechanical visco-eelastic element 

included in the corresponding analogous systems: 10  . Phenomenological mapping 

between eigen FO modes of electrical and mechanical chains 

 

VI. CONCLUDING REMARKS 

On the basis of the elements of mathematical phenomenology, scientific results in 

World research progress, is possible to classify in the few numbers of the elements of 

mathematical phenomenology on the basis of linear or non-linear phenomena in different 

area of sciences and identification of general models and methods applicable, as 

mathematical tools, in investigation of linear or non-linear dynamics in different area of 

sciences. 

Then, one of main research task, nowadays, is a project of reduction of models of different 

disparate nature systems in the basis of elements of mathematical phenomenology and 

corresponding qualitative, or structural, or mathematical analogies  as well as by 

approximate phenomenological mappings  around singular dynamic states. Integration 



knowledge on the basic elements of mathematical phenomenology will be basic 

knowledge kernel for future education of new university generations of students and 

researchers with larger scientific culture. 

 Task of investigation of different types of analogies is close with large knowledge about 

models of static and dynamics of the systems from different area of sciences. Also, for 

identification of analogous kinetic parameters in disparate nature system dynamics is 

coupled with the capability to have a high level of intuition and intuitive recognition 

similar models and methods on the basis of identification of analogies.  

Author believe that this very important task, in present time, is actual for research and 

obtained results would lead to a systematic basis analogous models and methods, that can 

computerize as expert system must require each researcher. Expert base of qualitative, 

structural or mathematical analogous models would be very useful to every researcher, as 

well as to the students to develop their research capabilities and intuitive thinking. 

These days appear series of journals and articles with analogous research results without 

knowledge, that analogous results exists long time in other area of sconces, Than, it is 

necessary an analysis and transfer of knowledge from one to other different area of 

sciences. 
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