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Аннотация. Послеполетный анализ траекторий посадок пассажирских 

самолетов, выполненных в процессе эксплуатации, дает важную информацию 

для понимания причин авиационных происшествий и разработки мер по их 

предотвращению. Восстановление c достаточной точностью фактической 

траектории полета самолета по зарегистрированным полетным данным остается 

актуальной задачей. Правильность восстановления траектории имеет особую 

значимость, когда стоит задача формирования и исследования масштабной 

выборки полетов с целью выявления объективных предпосылок к летному 

происшествию на посадке. 

В работе предлагается методика коррекции восстановленной траектории 

движения самолета на этапе посадки по зарегистрированным отклонениям 

самолета от равносигнальной зоны курсового радиомаяка и анализируются 

результаты коррекции. Показано, что индивидуальная коррекция каждой из 

траекторий посадки оказывает существенное влияние на характер 

распределения бокового отклонения рассматриваемой выборки траекторий 
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самолета от оси ВПП над входным порогом, а также координат точек 

приземления воздушного судна на ВПП. 

В работе использованы записи более 3000 реальных посадок пассажирского 

самолета в одном их аэропортов Российской Федерации. Для получения 

результата работы потребовалось выполнить все основные этапы обработки 

зарегистрированных полетных данных, начиная с расшифровки файла бортового 

регистратора, валидации записей рассматриваемых параметров и заканчивая 

пересчетом геодезических координат в дальность и боковое отклонения 

самолета относительно выбранной ВПП и восстановлением каждой из 

траекторий посадки. 

Ключевые слова: заход на посадку, координаты самолета, траектория, GPS, 

курсоглиссадная система, зарегистрированные полетные данные, коррекция 

траектории. 
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Abstract. Post-flight analysis of passenger aircraft flight paths performed during 

operation provides important information for understanding the causes of accidents 

and developing measures to prevent them. Restoring the aircraft actual flight path with 

sufficient accuracy from the registered flight data remains an actual task. The 

correctness of the trajectory recovery is of particular importance when the task is to 

investigate large number of flights, that is sufficient to identify objective precursors for 
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a flight accident on landing. The problem is that the recorded flight data does not allow 

“as it is” to directly plot a smooth trajectory of the aircraft in the coordinate system 

associated with the runway, due to the existing measurement errors of geodetic 

coordinates, as well as the discreteness of registering parameters in time and signal 

value on some types of aircraft. There are some technologies for restoring the airplane's 

trajectory in the horizontal plane on landing by integrating the components of the 

ground speed vector and setting the parameters of the computational algorithm by 

comparing the calculated trajectory with the recorded GPS coordinates of the aircraft. 

However, the processing of flight data records shows that in a number of airports the 

registered coordinates of landing trajectories (respectively, the reconstructed 

trajectories) can be shifted relative to the runway axis. 

The paper proposes a method for correcting the reconstructed trajectory of the 

aircraft at landing based on the registered deviations of the aircraft from the equal-

signal zone of the heading beacon and analyzes the results of such correction. It is 

shown, that individual correction of each landing trajectory has a significant effect on 

the distribution of the lateral deviation of the considered sample of aircraft trajectories 

from the runway axis above the threshold, as well as the lateral coordinates of the 

aircraft touchdown points on the runway. More than 3000 real passenger airplane 

landings at one of the airports of the Russian Federation were used in the paper. 

Keywords: landing approach, coordinates of the aircraft, flight path, GPS, instrumental 

landing system, recorded flight data, trajectory correction. 

 

Введение 

Большая часть задач расследования авиационных происшествий и 

обеспечения безопасности полетов связана с анализом траекторий движения 

самолета на этапе посадки, который включает в себя выход на глиссаду, 

снижение по глиссаде, выравнивание и пробег по взлетно-посадочной полосе 

(ВПП). Наиболее распространенным типом авиационного происшествия на 

посадке является выкатывание воздушного судна за пределы ВПП, поэтому 

сегодня большое внимание уделяется исследованию этого этапа полета и 

разработке методов заблаговременного распознавания опасных ситуаций [1÷8]. 
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Проблема заключается в том, что точность непосредственного измерения 

положения самолета в пространстве является недостаточной для анализа 

траекторий самолета на заключительном этапе посадки (снижение по глиссаде, 

выравнивание и движение по ВПП). 

В настоящей работе речь идет о траекториях ранее выполненных полетов, 

используемых для исследования особенностей выполнения посадок в условиях 

эксплуатации самолета в авиакомпаниях и отработки методик выявления 

предпосылок к летному происшествию. Одним из источников информации о 

положении самолета в пространстве является спутниковая система 

позиционирования GPS, которая в течение всего полета измеряет геодезические 

координаты. Другой источник информации связан с наземной курсоглиссадной 

системой посадки, которая позволяет на борту определить положение самолета 

относительно равносигнальных зон глиссадного и курсового радиомаяков (ГРМ 

и КРМ) в относительно узком пространственном конусе по курсу посадки. 

Для задач безопасности полетов требуется знать положение самолета 

относительно взлетно-посадочной полосы. Если рассматриваются заходы на 

посадку на одну ВПП с противоположных курсов, то обычно выбираются две 

декартовые системы координат с началом в точках пересечения входных торцов 

с осью ВПП. Методики построения фактических траекторий посадки самолета в 

горизонтальной и вертикальной плоскостях определяются набором 

регистрируемых параметров и различаются между собой. 

Алгоритмы пересчета широты и долготы в дальность и боковое отклонение 

относительно выбранной ВПП хорошо известны [9]. Однако вследствие 

погрешностей измерений координат спутниковыми навигационными системами 

[10] и, в ряде случаев, из-за дискретности регистрации измеренных параметров 

остается неопределенность в положении самолета относительно ВПП. 

Дискретность параметров по уровню сигнала определяется ценой младшего 

разряда бортового регистратора и может достигать десятков метров. 

В лучшем случае (когда можно пренебречь величиной дискретности 

регистрации по уровню сигнала) вычисленные значения бокового отклонения и 

дальности дают не гладкую траекторию движения самолета в горизонтальной 
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плоскости, а коридор шириной по оси Z не менее 15÷20 метров, рисунок 1.  

 

 
Рисунок 1 – Зарегистрированные координаты и восстановленная траектория 

посадки самолета. 
 
 

Фиолетовыми маркерами на рисунке 1 отмечены зарегистрированные 

координаты воздушного судна, пересчитанные в координаты ВПП. Синяя линия – это 

восстановленная по специальной методике гладкая траектория полета самолета на 

режиме захода на посадку. Красными линиями отмечены входной порог и боковые 

границы взлетно-посадочной полосы. 

Неопределенность в 7÷10 метров в положении самолета в горизонтальной 

плоскости не столь критична для продольной координаты, как для отклонения 

самолета от оси ВПП, если принимать во внимание, что длина ВПП составляет 

2500 м ÷ 3000 м, а ширина не превышает 50÷ 60 метров (в аэропортах Лондон Сити и 

Карловы Вары ширина ВПП составляет 30 метров). Поэтому в настоящей работе 

рассматривается только коррекция координаты Z. 

Можно предположить, что фактическая траектория лежит внутри данного 

коридора шириной 7÷10 метров. Существуют технологии восстановления гладкой 
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траектории через зарегистрированные значения широты и долготы, которые дают 

неплохой результат [11-18]. Однако опыт показывает, что восстановленная траектория 

требует коррекции с использованием дополнительной информации, например, 

зарегистрированных отклонений самолета от равносигнальной зоны КРМ. Например, в 

случае, представленном на рисунке 1, в полете не было выкатывания воздушного 

судна за боковую кромку ВПП, хотя отдельные зарегистрированные точки и 

фрагменты восстановленной траектории лежат за пределами боковой кромки ВПП. На 

основании этого можно сделать вывод, что все множество зарегистрированных 

координат смещено относительно ВПП. 

 

Методика и алгоритмы коррекции 

В настоящей работе для восстановления гладкой траектории движения 

самолета в горизонтальной плоскости была использована разработанная с 

участием одного из авторов работы методика [14-15] и программное 

обеспечение (ПО) [18]. При применении данного ПО для обработки записей 

большого количества посадок пассажирских самолетов одного типа было 

выявлено наличие систематической ошибки при определении траектории 

самолета относительно выбранной ВПП – пучок траекторий в некоторых 

аэропортах посадки оказался смещенным относительно оси ВПП. При этом 

величина бокового смещения зависит не только от аэропорта посадки, но также 

от курса посадки на одну и ту же ВПП с противоположных сторон. На рисунке 2 

показан пучок из 2600 траекторий посадки пассажирского самолета в одном из 

аэропортов РФ (все заходы на посадку с одним курсом). Синим прямоугольником 

на рисунке обозначены границы взлетно-посадочной полосы. 
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Рисунок 2  Пучок траекторий посадки до коррекции по ILS4 

 
 

Боковое отклонение «среднестатистической» траектории (сплошная линия 

малинового цвета) для приведенного пучка траекторий составляет примерно 

2÷5 метров при том, что по показаниям ILS самолеты в среднем снижались по 

глиссаде без отклонений от оси ВПП, рисунок 3. 

 

 
Рисунок 3 – Кривые отклонений самолета от равносигнальной зоны курсового радиомаяка 

 

Если трактовать отклонение среднестатистической траектории от оси ВПП 

как систематическую ошибку Zкорр, то коррекция каждой рассматриваемой 
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траектории в горизонтальной плоскости заключалась бы в ее сдвиге на величину 

ошибки. Для определения Zкорр потребовалось бы предварительно обработать 

какое-то количество записанных ранее траекторий, чтобы получить величину 

ошибки с приемлемой точностью. Такой метод уточнения положения 

траектории относительно оси ВПП является простым, но, вообще говоря, не 

корректным, поскольку физическая причина смещения пучка траекторий при 

заходе на посадку на некоторые ВПП остается невыясненной. 

Рассматриваемый ниже метод индивидуальной коррекции каждой из 

рассматриваемых траекторий по зарегистрированным показаниям 

курсоглиссадной системы представляется практически более значимым и 

обоснованным. На рисунке 4 в качестве примера приведены восстановленная по 

данным GPS гладкая траектория движения самолета в горизонтальной 

плоскости Z(X) (синяя линия) и кривая зеленого цвета, соответствующая 

зарегистрированным значениям отклонения самолета от равносигнальной зоны 

КРМ – параметр LocDev (Localizer Deviation), который измеряется в DDM 

(difference in the depth of modulation – разность глубин модуляции). 

 

 
Рисунок 4 – Сопоставление восстановленной траектории и величины отклонения самолета от 

равносигнальной зоны курсового радиомаяка. 

 

Сопоставление характера этих кривых в целом подтверждает 

работоспособность используемой методики и программного обеспечения для 

восстановления траектории полета самолета. Зеркальное изменение параметров 
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Z(Х) и LocDev(Х) на приведенном графике связано с принятым в работе правилом 

знаков. 

Коррекция величины бокового смещения восстановленной траектории 

осуществляется из условия, что самолет находится на оси ВПП (Z=0), если 

отклонение от равносигнальной зоны КРМ равно нулю (параметр LocDev = 0). На 

рисунке 4 на кривой Z(X) отмечены моменты времени, когда по данным ILS, 

самолет находится на оси ВПП. Видно, что нескорректированная траектория в 

приведенном примере смещена относительно оси ВПП на 11÷14 метров. 

Алгоритм коррекции траектории для каждого рассматриваемого полета 

выглядит следующим образом: 

1. В выбранном диапазоне дальностей до торца ВПП определяются все 

моменты времени, когда значение параметра LocDev = 0. 

2. Определяются значения бокового отклонения восстановленной 

траектории в моменты времени, когда LocDev = 0. 

3. Для каждой траектории определяется величина коррекции как 

среднее значение боковых отклонений восстановленной траектории, когда 

параметр LocDev = 0. 

4. Выполняется индивидуальная коррекция бокового отклонения 

каждой траектории путем вычитания определенной выше поправки из всего 

массива зарегистрированных значений бокового отклонения. 

Количество моментов времени, когда LocDev = 0, для разных полетов может 

варьироваться в широких пределах, в том числе гипотетически возможны 

случаи, когда в выбранном диапазоне дальностей самолет ни разу не пересечет 

равносигнальную зону КРМ (не рассматривается в настоящей работе). В таблице 

1 приведены значения величины Z при значении LocDev = 0 для 

рассматриваемого случая и полученная величина поправки. 

Таблица 1  

Значение бокового смещения при LocDev=0 

 1 2 3 4 5 Zкорр, м 

X, м -7209 -4855 -4355 -2364 -1509 
13.14 

Z, м 11.5 14.3 12.8 13.0 14.1 



10 
 

Результаты коррекции траектории посадки самолета 

Описанная выше процедура коррекции траекторий захода на посадку была 

применена к пучку траекторий, приведенному на рисунке 2. Коррекция 

выполнялась по результатам сопоставления кривых Z(X) и LocDev(Х) в диапазоне 

дальностей до торца ВПП -8000 м < X< 0. Выбранный диапазон может 

обсуждаться, поскольку параметр отклонения самолета от равносигнальной 

зоны остается какое-то время валидным и после пролета торца ВПП. В то же 

время следует учитывать, что с увеличением дальности до торца ВПП 

пропорционально возрастает погрешность в определении координаты Z при 

неизменной погрешности в отклонении самолета от равносигнальной зоны КРМ. 

В результате внесения поправок весь пучок траекторий сместился к оси 

ВПП, среднестатистическая траектория посадки практически совпадает с осью 

ВПП, что представляется логичным, рисунок 5.  

 

 
Рисунок 5  Пучок траекторий посадки после коррекции по ILS. 

 

Важно, что в результате коррекции не только сместилась средняя линия 

пучка траекторий, но изменились характеристики распределения траекторий по 

боковому отклонению. 
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Плотности распределения боковых отклонений траекторий самолета над 

торцом ВПП до и после коррекции представлены на рисунке 6.  

 

      
                      a) до коррекции                   b) после коррекции 

 
Рисунок 6 – Распределение по Z над торцом ВПП до и после коррекции траекторий 

(606 траекторий). 

 

Коррекция траекторий с использованием сигналов ILS сделала 

распределение практически симметричным относительно оси ВПП и уменьшила 

величину среднеквадратичного отклонения Z. В исходном пучке траекторий 

среднее по рассматриваемой выборке полетов значение бокового отклонения 

над торцом ВПП составляло примерно Z  5 метров, среднеквадратичное 

отклонение z = 6.3 м (рис. 6a); после коррекции среднее значение Z  2 метра, а 

z  4 метра (рисунок 6b). 

Вид представленных выше распределений становится более 

репрезентативным, если увеличить количество обработанных полетов. При этом 

изменяются и параметры распределений (средние значения и 

среднеквадратичные отклонения).  

На рисунках 7a и 7b приведены распределения величин бокового 

отклонения траектории самолета над торцом ВПП для 3208 траекторий посадки 

самолета в одном из аэропортов РФ (в одну выборку объединены посадки 

самолета с противоположных курсов). 
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                          a) до коррекции                           b) после коррекции 

   
Рисунок 7 – Распределение по Z над торцом ВПП до и после коррекции траекторий. 

 

Результат комплексирования сигналов GPS и ILS наглядно виден на 

примере расположения и размера области точек приземления самолета на ВПП.  

На рисунках 8, 9 показаны координаты точек приземления самолетов до и после 

коррекции восстановленных траекторий. После коррекции ширина зоны 

приземления стала заметно уже. 

 

 
 

Рисунок 8 – Координаты точек приземления самолета на ВПП до коррекции траекторий. 
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Рисунок 9 – Координаты точек приземления самолета на ВПП после коррекции 
траекторий по сигналам ILS. 

 
 

Чтобы численно описать размер зоны приземления были построены 

гистограммы распределения координат точек приземления, на которые были 

«натянуты» гладкие поверхности, рисунки 10 и 11. 

 
Рисунок 10  Плотность распределения точек приземления на поверхности ВПП (до 

коррекции траекторий). 
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Рисунок 11  Плотность распределения точек приземления на поверхности ВПП (после 

коррекции траекторий). 
 

Интегрированием плотности распределения в горизонтальных сечениях 

представленных выше гистограмм можно получить границы областей с 

определенным уровнем вероятности приземления воздушного судна. На рисунке 

12 обозначены зоны, в которых лежат 10%, 30%, 50% и 90% точек приземления. 

Обработка нескорректированных траекторий посадки показывает, что 90% 

точек приземления лежат на расстоянии примерно - 17 < Z < 20 метров от оси 

ВПП. 

 
Рисунок 12 – Границы областей приземления ВС на ВПП с заданными уровнями 

вероятности (нескорректированные траектории). 
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После коррекции точки приземления ожидаемо расположились 

практически симметрично относительно оси ВПП, рис. 13. Среднестатистическое 

боковое отклонение траектории Zср  1 метр; 90% точек приземления находятся 

в диапазоне -10 < Z < 15 метров относительно оси ВПП. 

 
Рисунок 13 – Границы областей приземления ВС на ВПП с заданными уровнями вероятности 

(скорректированные траектории). 
 

Параметры скорректированной области точек приземления согласуются с 

характерной формой «обрезиненного» пятна первых контактов пневматиков 

шасси, которое образуется на ВПП после многочисленных посадок самолетов, 

рисунок 14 [21]. 

 
 

Рисунок 14 – Характерное пятно первых контактов пневматиками шасси поверхности взлетно-
посадочной полосы. 
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Заключение 

Описанная в работе методика дополнительной коррекции восстановленной 

траектории движения самолета на посадке на основании зарегистрированных 

значений отклонений самолета от равносигнальной зоны курсового радиомаяка 

позволяет построить пучки траекторий, пригодных для анализа 

заключительного этапа посадки самолета, включая движение самолета по ВПП. 

Правильность восстановления каждой из траекторий имеет особую значимость, 

когда стоит задача исследования масштабной выборки полетов, выполненных 

разными пилотами при разных метеоусловиях и состоянии ВПП, с целью оценки 

границ коридора, в котором лежат траектории посадки, размера зоны 

приземления, выявления наблюдаемых в эксплуатации корреляций между 

параметрами полета при снижении по глиссаде и некоторой метрикой 

успешности посадки (например, координатой точки приземления) и пр. 

Изложенная выше методика коррекции траекторий была, в частности, 

использована при подготовке массивов данных и исследовании посадок 

пассажирского самолета с применением методов машинного обучения [19,20]. 
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