Оптимизация гелиоцентрических траекторий космического аппарата с солнечной электроракетной двигательной установкой с кластером однотипных двигателей

Ву Сан Вук

Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия e-mail: <u>sanukk@hanmail.net</u>

Аннотация

Рассматривается задача оптимизации гелиоцентрического участка траектории космического аппарата (КА) с солнечной электроракетной двигательной установкой (СЭРДУ). Предполагается, что СЭРДУ состоит из нескольких однотипных нерегулируемых двигателей. Число одновременно работающих двигателей в СЭРДУ ограничено доступной в каждый данный момент времени электрической мощностью. Для проектирования перспективных межпланетных миссий в рассматриваемом случае требуется оптимизация траектории со ступенчатой зависимостью тяги от гелиоцентрического удаления КА. Целью данной работы является разработка точного, быстрого устойчивого численного И метода для оптимизации траекторий ступенчатой гелиоцентрических co тягой, не требующего OT пользователя выбора какого-либо начального приближения. Рассматривается задача минимизации затрат топлива с фиксированным временем. Для решения задачи используется подход, основанный на принципе максимума, методе продолжения и сглаживании ступенчатой функции тяги. Приводятся математическая постановка

задачи, метод ее решения и численные примеры. Численные примеры подтверждают важность учета ступенчатого изменения тяги на ранних стадиях проектирования космических миссий.

Ключевые слова: солнечная электроракетная двигательная установка, межпланетная траектория, принцип максимума Понтрягина, метод продолжения.

Введение

Межпланетные перелеты часто требуют больших затрат характеристической скорости, что приводит к необходимости использования солнечных электроракетных двигательных установок (СЭРДУ) с высоким значением удельного импульса для уменьшения затрат рабочего тела [14, 15]. Использование СЭРДУ с фиксированной потребляемой электрической мощностью приводит к необходимости увеличения площади и массы солнечных батарей или уменьшения величины потребляемой мощности и тяги СЭРДУ для обеспечения работы СЭРДУ на максимальном гелиоцентрическом удалении, что приводит к снижению эффективности (а в ряде случаев – к невозможности) решения космической транспортной задачи. Поэтому нерегулируемых двигателей (например, применение штатных стационарных плазменных двигателей СПД-100) ведет к необходимости использования в составе СЭРДУ кластера из нескольких таких двигателей для обеспечения возможности одновременной работы максимально возможного их количества при доступной в каждый момент времени электрической мощности, зависящей от текущего

гелиоцентрического удаления космического аппарата (КА).

В статье рассматривается КА с СЭРДУ, в состав которой входит несколько однотипных нерегулируемых двигателей, причем число одновременно работающих двигателей в СЭРДУ ограничено доступной в каждый данный момент времени электрической мощностью. Задача оптимизации траекторий со ступенчатой зависимость тяги от доступной мощности рассматривалась, например, в работах [1-3] использованием прямого подхода, основанного на методах нелинейного С программирования. Известными недостатками прямых методов решения задач оптимального управления являются относительно низкая точность, низкая скорость сходимости и отсутствие строгого критерия завершения процесса оптимизации. Целью данной работы является разработка точного, быстрого и устойчивого численного метода для оптимизации гелиоцентрических траекторий со ступенчатой тягой, основанного на непрямом подходе к оптимизации и не требующего от пользователя выбора какого-либо начального приближения.

B рассматривается оптимизация гелиоцентрических статье траекторий СЭРДУ перелета космического аппарата с за фиксированное время С использованием подхода, основанного на принципе максимума Понтрягина и гомотопии между математическими моделями идеально-регулируемой СЭРДУ и СЭРДУ со ступенчатой тягой.

В работе используются методы, представленные в работах [4-8]. Последовательность пассивных и активных участков траектории с различным числом одновременно работающих двигателей определяет структуру траектории.

Сложность оптимизации траектории в рассматриваемой постановке связана, в основном, с негладкой зависимостью невязок краевой задачи принципа максимума от начальных значений сопряженных переменных при смене структуры траектории в процессе решения задачи. Для преодоления этой сложности и реализации гомотопии между задачами оптимизации перелета с идеально-регулируемой и ступенчатой тягой используется сглаженное представление ступенчатой функции тяги от доступной электрической мощности. Для обеспечения сходимости краевой задачи вводится зависимость сглаженной ступенчатой функции тяги от параметра продолжения, в результате чего тяга СЭРДУ в начале процесса продолжения имеет малые вариации производных по мощности, а в конце стремится к ступенчатой функции той функции той ступенчатой до малого регуляризирующего параметра.

Математическая модель солнечной электроракетной двигательной установки

Первичным источником энергии современных КА являются солнечные батареи с фотоэлектрическими преобразователями, преобразующие энергию электромагнитного излучения Солнца в электрическую энергию. Интенсивность солнечного электромагнитного излучения обратно пропорциональна квадрату гелиоцентрического удаления, что приводит к изменению электрической мощности, генерируемой солнечными батареями, при изменении удаления КА от Солнца. Из-за зависимости фотоэлектрических преобразователей К.П.Д. OT интенсивности солнечного электромагнитного излучения температуры, зависимость И электрической мощности вырабатываемой солнечными батареями P_{SA} , OT

гелиоцентрического удаления КА имеет более сложный характер. В большом КА диапазоне изменения гелиоцентрического удаления эта зависимость удовлетворительно аппроксимируется соотношением $P_{SA} = P_{SA BOL}/r^{\alpha}$, где $P_{SA BOL}$ – электрическая мощность солнечных батарей на гелиоцентрическом удалении КА в 1 а.е. в начале миссии, r – гелиоцентрическое удаление КА в а.е., α – эмпирический коэффициент, значение которого зависит от используемого типа фотоэлектрических преобразователей, оптических свойств и конструктивного исполнения солнечных батарей. Кроме того, электрическая мощность солнечных батарей зависит от радиационной деградации фотоэлектрических времени, В основном из-за преобразователей. Ha гелиоцентричесих траекториях основной причиной радиационной деградации являются высокоэнергетические корпускулярные потоки солнечного и галактического происхождения, поэтому приемлемой математической моделью деградации солнечных батарей на гелиоцентрических траекториях является линейное снижение их мощности по времени полета. В дальнейшем для расчета электрической мощности солнечных батарей используется соотношение $P_{SA} = (1 - \beta_d t) P_{SA BOI} / r^{\alpha}$, где β_d – коэффициент деградации, t – время полета.

Электрическая мощность, вырабатываемая солнечными батареями, обеспечивает работу маршевой СЭРДУ и служебных систем КА. В первом приближении можно принять, что электрическая мощность *P_{ss}*, требуемая для работы служебных систем постоянна. Тогда для обеспечения работы СЭРДУ доступна мощность

$$P = P_{SA} - P_{ss} = (1 - \beta_d \cdot t) P_{SA BOL} / r^{\alpha} - P_{ss}.$$
 (1)

Потребляемая СЭРДУ электрическая мощность связана с тягой *T* и удельным импульсом *с*СЭРДУ соотношением

$$P_{EPS} = Tc/2\,\eta_{EPS},\tag{2}$$

где η_{EPS} – к.п.д. СЭРДУ, который, в свою очередь, может зависеть от P_{EPS} , *T*, *c*. Как правило, технические особенности СЭРДУ не позволяют непрерывно изменять тягу и удельный импульс, отслеживая непрерывное изменение доступной для СЭРДУ электрической мощности *P*, то есть регулирование СЭРДУ, обеспечивающее полное потребление доступной для СЭРДУ электрической мощности ($P_{EPS} = P$) на гелиоцентрической траектории, обычно технически труднореализуемо.

В рамках этой статьи мы рассматриваем случай, когда СЭРДУ состоит из n_{max} нерегулируемых двигателей и одновременно может включаться $n \le n_{\text{max}}$ двигателей, причем $n = \min[n_{\max}, int(P(r,t)/P_{thr})]$, где P_{thr} – электрическая мощность, потребляемая одним двигателем. В этом случае удельный импульс СЭРДУ остается постоянным, а возможной тяги от располагаемой СЭРДУ зависимость максимально ДЛЯ электрической мощности имеет вид ступенчатой функции с одинаковой высотой СЭРДУ в ступенек. Основные параметры рамках рассматриваемой всех математической модели определяются соотношениями:

$$T = \sum_{i=1}^{n_{\max}} \delta_i(\psi_i) T_{thr}, \quad \psi_i = P - iP_{thr}, \quad \delta_i(\psi_i) = \begin{cases} 1, \psi_i \ge 0, \\ 0, \psi_i < 0, \end{cases} \quad (3)$$

где *T_{thr}*, *c_{thr}* – тяга и удельный импульс одного двигателя из состава СЭРДУ.

Математическая модель движения космического аппарата с СЭРДУ

Рассматривается движение КА в гравитационном поле Солнца с силовой

функцией $\Omega = \mu / r$, где μ - гравитационный параметр Солнца, r – гелиоцентрическое удаление КА. Уравнения движения КА имеют вид:

$$\frac{d^{2}\mathbf{x}}{dt^{2}} = \Omega_{\mathbf{x}} + \frac{\delta T}{m} \mathbf{e}_{\mathbf{p}}, \left\{ \frac{dm}{dt} = -\frac{\delta T}{c}, \right\}$$
(4)

где **х** – вектор положения КА в гелиоцентрической инерциальной системе координат, t – время, m – масса КА, $\mathbf{e}_{\mathbf{p}}$ – орт вдоль вектора тяги, δ - функция включениявыключения СЭРДУ (δ =1 при включенной СЭРДУ и δ =0 при выключенной СЭРДУ). Тяга СЭРДУ T в уравнениях (4) зависит от доступной для СЭРДУ электрической мощности (1) в соответствии с первым уравнением (3). Очевидно, что управляющими функциями, позволяющими формировать траекторию, являются $\delta(t)$ и $\mathbf{e}_{\mathbf{p}}(t)$.

Рассматривается задача перелета между двумя планетами в рамках метода сфер действия нулевой протяженности [9]. При отлете от планеты отправления в заданный момент времени t_0 КА заданной начальной массы m_0 имеет заданный гиперболический избыток скорости $V_{\infty 0}$, а подлет к планете назначения осуществляется в заданный момент $t_f = t_0 + \Delta t$ с нулевым гиперболическим избытком скорости, то есть рассматривается задача сопровождения этой планеты. Таким образом, начальные условия движения имеют вид

$$\mathbf{x}(t_0) = \mathbf{x}_{pl0}(t_0), \, |\mathbf{v}(t_0) - \mathbf{v}_{pl0}(t_0)| = V_{\infty 0}, \, m(t_0) = m_0,$$
(5)

где $\mathbf{x}_{pl0}(t_0)$, $\mathbf{v}_{pl0}(t_0)$ – гелиоцентрические положение и скорость планеты отправления в момент отправления, $\mathbf{v} = d\mathbf{x}/dt$ – гелиоцентрическая скорость КА. Конечные условия

движения имеют вид:

$$\mathbf{x}(t_f) = \mathbf{x}_{plf}(t_f), \, \mathbf{v}(t_f) = \mathbf{v}_{plf}(t_f), \tag{6}$$

где $\mathbf{x}_{plf}(t_f)$, $\mathbf{v}_{plf}(t_f)$ – гелиоцентрические положение и скорость планеты назначения в момент прибытия.

Задача оптимизации траектории

Рассматривается задача выбора оптимального управления $\delta(t)$, $\mathbf{e}_{\mathbf{p}}(t)$ и оптимального направления вектора отлетного гиперболического избытка скорости $\mathbf{V}_{\infty 0}$ заданной величины $V_{\infty 0}$,обеспечивающих минимум затрат рабочего тела СЭРДУ на перелет, то есть на перевод динамической системы, описываемой системой обыкновенных дифференциальных уравнений (4) за заданное время Δt из начального состояния (5) в конечное состояние (6). Очевидно, что минимуму затрат рабочего тела СЭРДУ

$$J = \int_{t_0}^{t_f} \delta \frac{T}{c} dt \,. \tag{7}$$

Применяя к задаче оптимального управления (4)-(7) принцип максимума Понтрягина, запишем функцию Понтрягина в виде

$$H = -\delta \frac{T}{c} + \mathbf{p}_{\mathbf{x}}^{\mathrm{T}} \mathbf{v} + \mathbf{p}_{\mathbf{v}}^{\mathrm{T}} \Omega_{\mathbf{x}} + \delta \frac{T}{m} \mathbf{p}_{\mathbf{v}}^{\mathrm{T}} \mathbf{e}_{\mathbf{p}} - \delta \frac{T}{c} p_{m}, \qquad (8)$$

где $\mathbf{p}_{\mathbf{x}}$, $\mathbf{p}_{\mathbf{v}}$ и p_m – переменные, сопряженные к вектору положения КА \mathbf{x} , вектору скорости КА \mathbf{v} и массе КА m соответственно.

В соответствии с принципом максимума, оптимальное управление максимизирует функцию Понтрягина, следовательно на оптимальной траектории

должны выполняться следующие соотношения:

$$\mathbf{e}_{\mathbf{p}} = \mathbf{p}_{\mathbf{v}} / p_{\mathbf{v}}; \delta = 1 \text{ если } \psi > 0, \ \delta = 0 \text{ если } \psi \le 0,$$
 (9)

где $\psi = \frac{p_v}{m} - \frac{p_m + 1}{c}$ — функция переключения. Если $\psi \equiv 0$ на некотором конечном интервале времени, то на этом интервале, в общем случае, имеет место особое управление, на котором $\delta \in [0; 1]$. Особое управление не является типичным для рассматриваемых оптимальных траекторий. Кроме того, мы рассматриваем СЭРДУ с нерегулируемыми по тяге двигателями, поэтому принимаем, что $\delta = 0$ если $\psi \le 0$.

Подстановка оптимального управления (9) в функцию Понтрягина (8) приводит к следующему гамильтониану задачи оптимального управления:

$$H = \mathbf{p}_{\mathbf{x}}^{\mathrm{T}} \mathbf{v} + \mathbf{p}_{\mathbf{v}}^{\mathrm{T}} \Omega_{\mathbf{x}} + \delta T \psi \,. \tag{10}$$

Система дифференциальных уравнений оптимального движения КА имеет вид:

$$\frac{d^{2}\mathbf{x}}{dt^{2}} = \Omega_{\mathbf{x}} + \frac{\delta T}{m} \frac{\mathbf{p}_{\mathbf{v}}}{p_{\mathbf{v}}},$$

$$\frac{dm}{dt} = -\frac{\delta T}{c},$$

$$\frac{d^{2}\mathbf{p}_{\mathbf{v}}}{dt^{2}} = \Omega_{\mathbf{xx}} + \delta \frac{\partial T}{\partial P} \frac{\partial P}{\partial \mathbf{x}} \psi,$$

$$\frac{dp_{m}}{dt} = \delta T \frac{p_{\mathbf{v}}}{m^{2}},$$
(11)

а краевые условия определяются соотношениями

$$\mathbf{x}(t_0) = \mathbf{x}_{pl0}(t_0), \, \mathbf{v}(t_0) = \mathbf{v}_{pl0}(t_0) + V_{\infty 0} \mathbf{p}_{v0} / p_{v0}, \, m(t_0) = m_0, \tag{12}$$

$$\mathbf{x}(t_f) = \mathbf{x}_{plf}(t_f), \, \mathbf{v}(t_f) = \mathbf{v}_{plf}(t_f), \, p_m(t_f) = 0.$$
(13)

Второе уравнение в (12) и последнее (13) следует из известных условий трансверсальности (см., например, [4, 6]). Таким образом, задача оптимального

управления сводится к решению краевой задачи (11)-(13), то есть требуется найти недостающие начальные условия для сопряженных переменных $\mathbf{p}_{v0} = \mathbf{p}_{v}(t_{0}), \mathbf{p}_{x0} = -d\mathbf{p}_{v0}/dt|_{t=t_{0}} = \mathbf{p}_{x}(t_{0}), p_{m0} = p_{m}(t_{0})$, при которых удовлетворяются конечные условия (13).

Следует отметить, что ступенчатая зависимость тяги от мощности приводит к разрывам второго рода в точках переключения уровня тяги ($\psi_i = 0$) зависимости производной $\partial T/\partial P$ от мощности. Так как эта производная входит в правую часть уравнений (11),ее разрывы осложняют численное решение задачи в рассматриваемой постановке по сравнению с традиционной задачей с непрерывной зависимостью тяги от мощности. Именно для преодоления этого препятствия разработан численный метод решения краевой задачи (11)-(13) с использованием сглаженной зависимости тяги от мощности.

Метод решения краевой задачи

Для решения краевой задачи используется двухстадийный метод, описанный в [6]. Сначала решается задача оптимизации траектории КА с идеально-регулируемым двигателем ограниченной мощности с использованием метода продолжения, описанного в работе [4]. Метод продолжения по гравитационному параметру позволяет использовать тривиальное (нулевое) начальное приближение для неизвестных значений сопряженных переменных в момент старта [4]. В рамках рассматриваемой задачи оптимизации траектории КА с идеально-регулируемым двигателем потребляемая электрическая мощность СЭРДУ ограничивается гладкой зависимостью (1), а программы изменения тяги и удельного импульса выбираются, в

рамках этого ограничения, оптимальными для обеспечения минимальных затрат рабочего тела СЭРДУ. Полученные в результате оптимизации траектории КА с идеально-регулируемым двигателем начальные значения сопряженных переменных используются в качестве начального приближения на второй стадии, которая реализует численное продолжение оптимальной траектории КА с идеальнорегулируемым двигателем в оптимальную траекторию КА с СЭРДУ со ступенчатым изменением тяги.

Метод продолжения основан на ньютоновской гомотопии между задачей с известным решением и задачей, решение которой необходимо найти. Решение краевой задачи (11)-(13) формально можно записать в виде

$$\mathbf{f}(\mathbf{z}) = \mathbf{0},\tag{14}$$

где $\mathbf{f} = [(\mathbf{x}(t_f) - \mathbf{x}_{plf}(t_f))^{\mathrm{T}}, (\mathbf{v}(t_f) - \mathbf{v}_{plf}(t_f))^{\mathrm{T}}, p_m(t_f)]^{\mathrm{T}} -$ вектор невязок на правом конце траектории, $\mathbf{z} = (\mathbf{p}_{\mathbf{x}0}^{\mathrm{T}}, \mathbf{p}_{\mathbf{v}0}^{\mathrm{T}}, p_{m0})^{\mathrm{T}}$ – вектор неизвестных параметров краевой задачи. В общем случае, при некотором значении $\mathbf{z} = \mathbf{z}_0$ условие (14) не выполняется:

$$\mathbf{f}(\mathbf{z}_0) = \mathbf{b} \neq \mathbf{0}.\tag{15}$$

Рассмотрим погружение уравнения (14) в однопараметрическое семейство

$$\mathbf{f}(\mathbf{z}) = (1 - \tau)\mathbf{b} , \qquad (16)$$

где τ - параметр продолжения, и представим вектор **z** в виде функции от этого параметра: $\mathbf{z} = \mathbf{z}(\tau)$, причем $\mathbf{z}(0) = \mathbf{z}_0$. Потребуем выполнения равенства (16) для любого $0 \le \tau \le 1$. Очевидно, что при $\tau = 0$ уравнение (16) совпадает с (15), а при $\tau = 1$ – с уравнением для невязок для искомой краевой задачи (14).

Уравнение (16), фактически, представляет ньютоновскую гомотопию между

системой уравнений $\mathbf{f}(\mathbf{z}) - \mathbf{b} = 0$ с известным решением $\mathbf{z} = \mathbf{z}_0$ и исходной системой уравнений $\mathbf{f}(\mathbf{z}) = 0$.

Дифференцируя уравнение (16) по параметру продолжения τ и разрешая полученное выражение относительно производной $d\mathbf{z}/d\tau$, получим формальную редукцию уравнения (14) к задаче Коши:

$$\frac{d\mathbf{z}}{d\tau} = -\left(\frac{\partial \mathbf{f}}{\partial \mathbf{z}}\right)^{-1} \mathbf{b},$$

$$\mathbf{z}(0) = \mathbf{z}_0, \ 0 \le \tau \le 1.$$
(17)

Очевидно, что интегрируя (17) по τ от 0 до 1, в силу (15), (16) можно определить искомый вектор неизвестных параметров краевой задачи (14) в виде z=z(1).

Дифференциальные уравнения (17) назовем дифференциальными уравнениями метода продолжения. Для применимости метода продолжения, основанного на уравнении (17), необходимо существование и невырожденность матрицы частных производных $\partial \mathbf{f} / \partial \mathbf{z}$ на всем интервале продолжения $\tau \in [0;1]$.

Для реализации гладкого продолжения траектории КА с идеальнорегулируемым двигателем в траекторию КА с СЭРДУ со ступенчатой тягой необходимо ввести параметр продолжения τ в правые части дифференциальных уравнений оптимального движения. В этом случае вектор невязок **f** будет явно зависеть от τ , а дифференциальные уравнения метода продолжения примут вид:

$$\frac{d\mathbf{z}}{dt} = -\mathbf{f}_{\mathbf{z}}^{-1} \left(\mathbf{b} + \frac{\partial \mathbf{f}}{\partial \tau} \right).$$
(18)

Сами дифференциальные уравнения оптимального движения КА представим в

виде:

$$\frac{d^{2}\mathbf{x}}{dt^{2}} = \Omega_{\mathbf{x}} + \frac{(1-\tau)\cdot\eta_{EPS}P + \tau\cdot\delta_{2}T}{(1-\tau)\cdot(\eta_{EPS}P_{0} + m^{2}p_{m}) + \tau\cdot mp_{\nu}}\mathbf{p}_{\mathbf{v}},$$

$$\frac{dm}{dt} = -\frac{(1-\tau)\cdot\eta_{EPS}Pm^{2}p_{\nu}^{2} + \tau\cdot\delta_{2}T}{(1-\tau)\cdot2(\eta_{EPS}P_{0} + m^{2}p_{m})^{2} + \tau\cdotc},$$

$$\frac{d^{2}\mathbf{p}_{\mathbf{v}}}{dt^{2}} = \Omega_{\mathbf{xx}}\mathbf{p}_{\mathbf{v}} + \frac{(1-\tau)\cdot\eta_{EPS}\frac{\partial P}{\partial \mathbf{x}}p_{\nu}^{2} + \tau\cdot\delta_{2}\frac{\partial T}{\partial \mathbf{x}}\psi}{(1-\tau)\cdot(\eta_{EPS}P_{0} + m^{2}p_{m}) + \tau},$$

$$\frac{dp_{m}}{dt} = \frac{(1-\tau)\cdot\eta_{EPS}Pmp_{m}p_{\nu}^{2} + \tau\cdot\delta_{2}Tp_{\nu}}{(1-\tau)\cdot(\eta_{EPS}P_{0} + m^{2}p_{m}) + \tau\cdot m^{2}},$$
(19)

где $P_0 = P_{SABOL}/r_0^{\alpha} - P_{ss}$ – электрическая мощность, доступная для СЭРДУ в начале перелета, r_0 – начальное гелиоцентрическое удаление КА, $\eta_{EPS} = 2P_{thr}/T_{thr}c$ – к.п.д. СЭРДУ, $\delta_2(\psi, \tau) = \frac{1}{2} \left[\frac{\psi}{1 - \tau + \tau \cdot |\psi| + \varepsilon(\tau)} + 1 \right]$ – сглаженное представление релейной функции включения-выключения СЭРДУ $\delta(\psi)$, $\varepsilon(\tau) = (1 - \tau)\varepsilon_0 + \tau\varepsilon_f$ –

регуляризирующее слагаемое, ε_0 , ε_f – константы, определяющие вид зависимости $\delta_2(\psi, \tau)$ и точность аппроксимации ступенчатой функции.

Для сглаживания правых частей (19) вместо ступенчатой функции (3) используется следующая гладкая аппроксимация ступенчатой зависимости тяги СЭРДУ от доступной мощности:

$$T = \sum_{i=1}^{n_{\max}} \delta_{1i}(\psi_i, \tau) T_{ihr}, \quad \psi_i = P - iP_{ihr}, \quad \delta_{1i}(\psi_i, \tau) = \frac{1}{2} \left[\frac{\psi_i}{1 - \tau + \tau |\psi_i| + \varepsilon(\tau)} + 1 \right], \tag{20}$$

где $\delta_{1i}(\psi_i, \tau)$ – гладкая аппроксимация $\delta_i(\psi_i)$.Для решения приводимых далее задач использовались значения $\varepsilon_0 = 1$, $\varepsilon_f = 10^{-7}$. Очевидно, что при $\tau = 0$ система (18) совпадает с системой дифференциальных уравнений оптимального движения КА с

идеально-регулируемым двигателем, а при $\tau = 1 - c$ системой дифференциальных уравнений оптимального движения КА с СЭРДУ с точностью до ошибок гладкой аппроксимации функций $\delta(\psi)$ и $\delta_i(\psi_i)$ функциями $\delta_2(\psi, \tau)$ и $\delta_{1i}(\psi_i, \tau)$ соответственно.

На рисунке 1 представлена зависимость сглаженной функции тяги (20) от мощности и параметра продолжения для СЭРДУ, состоящего из 4 двигателей, тяга каждого из которых составляет 83 мН при потребляемой мощности 1500 Вт.

Рисунок 1 – Зависимость сглаженной функции тяги от мощности и параметра продолжения

Предлагаемый метод решения рассматриваемой задачи оптимизации траектории КА с СЭРДУ со ступенчатой тягой заключается в интегрировании дифференциальных уравнений метода продолжения в виде (18) с начальным приближением **z**₀, полученным из решения задачи оптимизации траектории КА с идеально-регулируемым двигателем [4, 5]. При этом для вычисления вектора невязок **f** интегрируются дифференциальные уравнения (19) с начальными

условиями (12), а для вычисления производных $\mathbf{f}_{\mathbf{z}}$ и \mathbf{f}_{τ} используется метод комплексного шага [10].

Численные примеры

В качестве численного примера оптимизации траекторий с использованием разработанного метода рассмотрим задачу перелета КА от Земли к Марсу. Дата отлета КА от Земли – 20 апреля 2035 года, отлетный гиперболический избыток скорости 2000 м/с, длительность перелета 700 суток. Рассматривались два варианта начальной массы КА на отлетной траектории: 1800 кг и 1500 кг. Для расчета координат и компонент скорости Земли и Марса использовалось эфемеридное обеспечение JPLDE403 [11].Приняты следующие параметры СЭРДУ:

- СЭРДУ включает в свой состав 4 двигателя тягой по $T_{thr} = 83$ мH с удельным импульсом c = 14906.108 м/с, потребляющих по $P_{thr} = 1500$ Вт электрической мощности каждый.

- начальная мощность солнечных батарей $P_{SA BOL} = 7000$ Вт, $\alpha = 2$, $P_{ss} = 0$, $\beta_d = 0$.

На рисунке 2 представлены основные результаты оптимизации траектории перелета. В верхнем ряду представлены проекции оптимальной гелиоцентрической траектории КА на плоскость эклиптики. Тонкими линиями показаны орбиты Земли и Марса, кружками – положения Земли в момент отлета и Марса в момент прибытия КА, жирными линиями – участки траектории КА с работающей СЭРДУ, пунктирной линией – пассивные участки траектории. В нижнем ряду представлены зависимости

тяги СЭРДУ от времени. Слева представлен вариант с начальной массой КА 1800 кг, а справа – с начальной массой КА 1500 кг. Жирными линиями показана оптимальная ступенчатая программа изменения тяги. Тонкими линиями, для сравнения, программа гладкой показанаоптимальная изменения ТЯГИ при зависимости максимальной тяги СЭРДУ от доступной мощности и при тех же значениях *P*_{SA BOL} и СЭРДУ (максимальная В ЭТОМ случае 387.6511 мΗ С тяга равна на гелиоцентрическом удалении 1 а.е. и изменяется обратно пропорционально квадрату гелиоцентрического удаления КА).

При начальной массе КА 1800 кг требуемые затраты рабочего тела СЭРДУ составляют 545.084 кг, к сфере действия Марса подлетает КА массой 1254.916 кг. При начальной массе КА 1500 кг требуемые затраты рабочего тела СЭРДУ составляют 354.068 кг, к сфере действия Марса подлетает КА массой 1145.932 кг. В обеих вариантах траектория начинается с пассивного участка (длительностью менее 2 суток в первом варианте и более 60 суток во втором), далее следует длительный активный участок на котором последовательно одновременно работают 4, 3, 2 и 1 двигатель, длительный пассивный участок и короткий активный участок, на котором одновременно работают 2 двигателя. Число одновременно работающих двигателей зависит от доступной электрической мощности и знака функции переключения *ψ*. В обеих случаях траектория КА становится очень близкой к орбите Марса после завершения участка траектории с одним работающим двигателем, из-за чего последний активный участок очень короткий.

Для гладкой зависимости тяги от доступной электрической мощности затраты

рабочего тела СЭРДУ снижаются до 422.580 кг для КА с начальной массой 1800 кг и до 336.101 кг для КА с начальной массой 1500 кг. Во втором случае увеличение затрат рабочего тела СЭРДУ при переходе к ступенчатой модели тяги относительно невелико (около 18 кг, или 5%), но для случая начальной массы КА 1800 кг оно составляет 122.5 кг (29%). Такое большое увеличение требуемых затрат рабочего тела связано с существенным уменьшением продолжительности пассивных участков и менее эффективным использованием доступной электрической мощности при ступенчатой программе изменения тяги. Этот численный пример показывает важность рассмотрения ступенчатой программы изменения тяги для КА с кластером нерегулируемых двигателей уже на ранних стадиях разработки.

Рисунок 2 – Оптимальные траектории перелета КА с СЭРДУ к Марсу и

оптимальные программы изменения тяги СЭРДУ

Выводы

Разработан численный метод оптимизации траекторий КА с СЭРДУ, состоящей из нескольких однотипных двигателей и имеющей несколько уровней тяги, в зависимости от располагаемой электрической мощности. Метод использует принцип максимума Понтрягина для редукции задачи оптимального управления в краевую задачу для системы обыкновенных дифференциальных уравнений и основанный на ньютоновской гомотопии метод продолжения для редукции краевой задачи к задаче Коши. В качестве начального приближения для неизвестных параметров краевой задачи (начальных значений сопряженных переменных) используются начальные значения сопряженных переменных в задаче оптимизации траектории КА с идеально-регулируемым двигателем. Метод оптимизации траекторий КА с идеально-регулируемым двигателем, не требующий задания пользователем какого-либо начального приближения, заимствован из работы [4]. Для численной реализации ньютоновской гомотопии между траекториями КА с идеально-регулируемым двигателем и с СЭРДУ, имеющей ступенчатую тягу, в дифференциальные уравнения оптимального движения вводится параметр продолжения т, при нулевом значении которого уравнения движения соответствуют случаю идеально-регулируемой тяги, а при $\tau = 1 - случаю перелета КА с СЭРДУ со$ ступенчатой тягой. Для обеспечения работоспособности метода продолжения используется сглаженная аппроксимация релейной функции включения-выключения СЭРДУ, а также сглаженное представление ступенчатой функции тяги СЭРДУ от

располагаемой электрической мощности.

Разработанный метод опробован на примере оптимизации гелиоцентрической траектории перелета КА с 4 однотипными двигателями к Марсу. Численные эксперименты показали удовлетворительную сходимость и быстродействие представленного метода. Представленные численные примеры подтверждают важность учета ступенчатого изменения тяги на ранних стадиях проектирования космических миссий.

Библиографический список

1. Englander J.A., Vavrina M.A., Hinckley D. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints. // AAS/AIAA Spaceflight Mechanics Meeting. Napa Valley. California. USA. 2016. 20 p.

2. Whiffen G.J. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design. // AIAA/AAS Astrodynamics Specialist Conference and Exhibi. Keystone. Colorado. USA. 2006. 12 p.

3. Sims J., Finlayson P., Rinderle E., Vavrina M., Kowalkowski T. Implementation of a low-thrust trajectory optimization algorithm for preliminary design. // AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone. Colorado. USA. 2006. 10 p.

4. Petukhov V.G. Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method // Cosmic Research. 2008. № 46(3), pp. 219-232.

5. Petukhov V.G. One Numerical Method to Calculate Optimal Power-Limited Trajectories // International Electric Propulsion Conference. 1995, 8 p.

6. Petukhov V.G. Method of continuation for optimization of interplanetary low-thrust trajectories // Cosmic Research. 2012. № 50(3), pp. 249-261.

7. Petukhov V.G., Konstantinov M.S., Fedotov G.G. 1st ACT Global Trajectory Optimisation Competition: Results found at Moscow Aviation Institute and Khrunichev State Research and Production Space Center // ActaAstronautica. 2007. № 61(9), pp. 775-785.

8. Ivanyukhin A.V., Petukhov V.G. The thrust minimization problem and its applications // Cosmic Research. 2015. № 53(4), pp. 300-310.

9. Bate R.R., Mueller D.D., White J.E. Fundamentals of Astrodynamics. - New York: Dover Publications, 1971, pp. 333–334.

10. Squire W., Trapp G. Using complex variables to estimate derivatives of real functions // SIAM (Society for Industrial and Applied Mathematics) Review. 1998. Vol. 40. No. 1, pp. 110-112.

11. Standish E.M., Newhall X.X., Williams J.G., Folkner W.F. JPL Planetary and Lunar Ephemerides, DE403/LE403. - Jet Propulsion Laboratory Interoffice Memorandum (IOM 343-04-008). 1995. 18 p.

12. Soyuz User's Manual. Issue 2. Revision 0. – Arianespace. 2012. 244 p.

13. Nakles M.R., Hargus W.A., Delgado J.J., Corey R.L. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster // 32nd International Electric Propulsion Conference (IEPC-2011-003). Weisbaden. Germany. 2011. 12 p.

14. Лёб Х.В., Петухов В.Г. Попов Г.А. Гелиоцентрические траектории космического аппарата с ионными двигателями для исследования Солнца // Труды

MAИ. 2011. № 42. URL: http://www.mai.ru/science/trudy/published.php?ID=24275

15. Константинов М.С., Петухов В.Г., Лёб Х.В. Применение высокочастотного ионного двигателя RIT-22 в проекте «Интергелио-Зонд» // Труды МАИ. 2012. № 60. URL: http://www.mai.ru/science/trudy/published.php?ID=35372