УДК 621.822.5

Анализ устойчивости симметричного ротора в лепестковых газодинамических подшипниках

Ю.И. Ермилов

Аннотация

Рассматривается устойчивость жесткого ротора в лепестковых газодинамических подшипниках как к воздействию внутренних сил смазочного слоя, так и к действующим на ротор псевдогироскопическим возмущающим гидромеханическим силам. Приведены расчетные уравнения и представлены результаты расчетов и анализ устойчивости ротора без воздействия и при воздействии внешних возмущающих сил для лепестковых газодинамических подшипников с различными параметрами.

Ключевые слова: устойчивость ротора; лепестковые газодинамические подшипники; нестационарное уравнение газовой смазки; внешние возмущающие силы.

Введение

Лепестковые газодинамические подшипники (ЛГП) применяются в качестве опор высокооборотных турбомашин. Одной из причин их перспективности является повышенная устойчивость к самовозбуждающимся колебаниям ротора, возникающим при его вращении в обычных подшипниках скольжения вследствие возмущающей силы, действующей в смазочном слое при вращении ротора и направленной перпендикулярно вектору смещения цапфы из равновесного положения.

ЛГП используются в турбохолодильниках систем кондиционирования самолетов, в малых энергетических установках и являются перспективными для использования во вспо-

1

могательных силовых установках, малых центробежных компрессорах, малых турбореактивных двигателях и других высокооборотных турбомашинах.

При высоких частотах вращения ЛГП могут иметь различную степень устойчивости в зависимости от конструктивных параметров. Обеспечение устойчивости ЛГП при высоких частотах вращения имеет важное значение для создания совершенных турбомашин с этими опорами.

Одна из конструкций ЛГП с несколькими лепестками и подкладными гофрированными лентами представлена на рис. 1. Лепестки и гофрированная лента образуют пакет упругих элементов, придающий опорной поверхности лепестков упруго-демпферные свойства.

Рис. 1. Вариант конструкции ЛГП с подкладными гофрированными лентами. 1 – цапфа, 2- корпус, 3 - лепесток, 4 – гофрированная лента

При разработке турбомашин важное значение имеет также обеспечение устойчивости ротора к внешним возмущающим псевдогироскопическим гидромеханическим силам, возникающим в рабочих колесах, уплотнениях и других элементах.

Одним из подходов к определению устойчивости упруго-демпферных подшипников, имеющих упруго закрепленные опорные элементы (элемент) к которым можно отнести и ЛГП, является использование различных динамических схем роторной системы, где реакции смазочного слоя и упруго-демпферного подвеса опорного элемента подшипника выражаются через коэффициенты жесткости, коэффициенты перекрестной жесткости и коэффициенты демпфирования [1], [2]. В общем случае эти коэффициенты могут зависеть от частоты вращения, эксцентриситета и других факторов.

Использование такого подхода для расчета устойчивости ротора с ЛГП сопряжено с определенными трудностями. Это связано с тем, что обычно коэффициенты жесткости и демпфирования определяются для упруго-демпферных подшипников с недеформируемыми

2

поверхностями опорного элемента (например, подшипник с промежуточной жесткой втулкой). Для такого подшипника можно отдельно вычислять коэффициенты как для смазочного слоя, так и для упруго-демпферного подвеса. Эти коэффициенты не влияют друг на друга. В случае с ЛГП ситуация совершенно иная. Под давлением смазочного слоя происходит деформация лепестков и меняется профиль смазочного слоя, что изменяет соотношения действующих в нем сил, т. е. эквивалентные коэффициенты жесткости и демпфирования смазочного слоя будут зависеть также от свойств пакета упругих элементов.

Необходимо отметить, что на настоящее время в известных информационных источниках отсутствуют публикации по расчету устойчивости ЛГП с учетом свойств смазочного слоя и пакета упругих элементов.

В данной работе расчет устойчивости ротора в ЛГП заключается в вычислении и анализе траектории движения центра цапфы. Система ротор - подшипники считается устойчивой, если с течением времени амплитуда колебаний либо стремится к нулю, либо принимает некоторое постоянное значение, не превышающее заданной величины.

В работе изложена математическая модель и представлены результаты расчетов устойчивости симметричного, имеющего точечную массу ротора в ЛГП при различных конструктивных параметрах без учета внешних возмущающих сил.

Представлены результаты расчетов максимальной величины внешних возмущающих сил на границе устойчивости ротора при тех же параметрах ЛГП и различных частотах вращения.

Расчетные уравнения и допущения

Конструктивная схема ЛГП с гофрированными лентами представленная на рис. 1.

Расчетная схема этого ЛГП представлена на рис. 2. Смазочный слой толщиной H образован вращающемся ротором 1 и тремя лепестками 2. Лепестки опираются на корпус подшипника 3 через элементарные демпферы q_i и пружины с жесткостью c_i (в общем случае все эти элементы могут иметь нелинейные характеристики). Лепестки разбиты на множество участков в окружном направлении. Каждая пара q_i и c_i поддерживает *i*-й участок. Внутренняя поверхность лепестков находится от поверхности подшипника на расстоянии H_n . Лепестки не имеют изгибной жесткости, поэтому и прогиб *i*-го участка, и изменение координаты H_n определяется действующим на участок средним давлением P_i , демпфером q_i и пружиной c_i .

3

При вращении и отсутствии прецессии ротор массой m действует в вертикальном направлении на подшипник с силой, равной половине своего веса $P_B=0.5 \cdot mg$.

Рис. 2. Расчетная схема ЛГП с гофрами с тремя лепестками. 1- цапфа, 2 - лепестки, 3 – корпус подшипника, c_i – элементарные пружины, q_i - элементарные демпферы.

Для расчета давления в смазочном слое используется нестационарное уравнение газовой смазки в частных производных [3]:

$$\frac{\partial}{\partial \varphi} \left(h^3 p \frac{\partial p}{\partial \varphi} - \Lambda ph \right) + \frac{\partial}{\partial z} \left(h^3 p \frac{\partial p}{\partial z} \right) = \Lambda \frac{\partial}{\partial \varphi} \left(ph \right) + \sigma \frac{\partial}{\partial \tau} \left(ph \right), (1)$$

где $h = \frac{H}{R}$ - относительная толщина смазочного слоя, H- текущая толщина смазочного слоя, $p = \frac{P}{P_a}$ - относительное давление, $\partial Z = \frac{\partial Z}{R}$ – приведенная координата в осевом направлении, $\Lambda = \frac{6\mu\omega R^2}{P_a H_m^2}$ - параметр сжимаемости, $\sigma = \frac{12\mu\nu R^2}{P_a H_m^2}$ – параметр сдавливания, μ - вязкость газа,

ω – угловая скорость вращения, R – радиус цапфы, H_m – характерная толщина слоя, P_a - давление окружающего газа, ν – частота прецессии ротора.

Решение уравнения (1) производится методом конечных разностей.

Одной из наиболее сложных проблем при решении задач динамики ротора в ЛГП и, в частности, устойчивости ротора, является определение и учет демпфирования пакета упру-

гих элементов ЛГП, возникающего в результате скольжения в зонах контактов лепестковых элементов при прецессии цапфы.

В работе [4] представлены результаты экспериментального исследования демпфирования гофрированной ленты в подшипнике. При испытаниях варьировалась частота нагрузки на гофру, амплитуда прогиба гофры и средняя нагрузка на гофрированную ленту. Во всех экспериментах для гистерезисной петли была получена эллиптическая зависимость нагрузка – смещение. Пример такой зависимости в безразмерных координатах смещения A и нагрузки F представлен на рис. 3. Полученная зависимость нагрузка – смещение характерна для вязкого трения. Представлены полученные в результате обработки экспериментов зависимости безразмерного коэффициента демпфирования D^* от средней нагрузки F_n (рис. 4), частоты колебаний f (рис. 5) и амплитуды колебаний A_0 (рис. 6). Из анализа результатов работы следует, что демпфирование пакета ЛГП с гофрированным элементом можно рассматривать как вязкое демпфирование, зависящее от частоты, амплитуды колебаний и внешней нагрузки.

Рис. 3. Зависимость нагрузка – смещение при частоте 500 Гц и амплитуде 5 µm.

Рис. 4. Зависимость безразмерного коэффициента демпфирования D* от средней нагрузки *F_n* (H).

Рис. 5. Зависимость безразмерного коэффициента демпфирования D* от частоты колебаний (Гц). Рис. 6. Зависимость безразмерного коэффициента демпфирования D* от амплитуды колебаний (µm).

Анализ результатов исследований, представленных в работе [2], показывает, что демпфирование пакета упругих элементов является сложной функцией конструктивных параметров пакета, температуры, состава окружающего газа, материалов, из которых изготовлен упругий пакет ЛГП. В то же время представленные зависимости коэффициента демпфирования от нагрузки, частоты колебаний и амплитуды могут быть использованы для приближенных расчетов демпфирования пакета лепестковых элементов ЛГП.

Полученные в указанной работе зависимости использованы в расчетах следующим образом. Из зависимости на рис. 5 видно, что в диапазоне частот 150 до 1000 Гц, в котором обычно находятся частоты колебаний роторов в ЛГП, коэффициент демпфирования слабо зависит от частоты колебаний. Поэтому в расчетной модели принято, что коэффициент демпфирования не зависит от частоты колебаний. Принято, что приведенный к единице площади коэффициент демпфирования *i*-го участка определяется из выражения:

$$d_i = d_0 f_1(A_i) f_2(F_i), (2)$$

где d_0 – приведенный коэффициент демпфирования при номинальной амплитуде колебаний A_0 и номинальной средней нагрузке F_0 , A_i и F_i – текущая амплитуда колебаний и средняя за текущий период нагрузка, $f_1(A_i)$ - отношение коэффициентов демпфирования при амплитудах A_i и A_0 , определяется интерполяцией из зависимости на рис. 6, $f_2(F_i) = \frac{F_i}{F_0}$ – определяется из приблизительно линейной зависимости коэффициента демпфирования от средней нагрузки (рис. 4). Поскольку нагрузка на участок пропорциональна избыточному давлению $(P_i - P_a), f_2(F_i) = \frac{(P_i - P_a)}{(P_0 - P_a)},$ где P_0 – номинальное давление в слое.

После вычисления коэффициента демпфирования для *i*-го участка скорость V_i смещения поверхности участка определяется с учетом равенства силы давления смазочного слоя и реакции пакета из уравнения:

$$(P_i - P_a)S_i = d_i S_i V_i + c_i S_i (H_{\pi 0i} - H_{\pi i}), \tag{3}$$

где P_i – давление смазочного слоя на участок, S_i – площадь участка, c_i –приведенный к единице площади коэффициент жесткости *i*-го участка, H_{n0i} и H_{ni} – вертикальные координаты поверхности *i*-го участка лепестка в начальном и текущем состоянии.

Расчет по проверке устойчивости системы ЛГП - ротор без внешних возмущающих сил производится следующим образом.

При имеющейся на *j*-й итерации толщине смазочного слоя H давление в смазочном слое P находится в результате решения уравнения (1). Из уравнения (3) находятся скорость смещения поверхности элементарных участков подшипника. По известной скорости V_i и заданному малому шагу по времени Δt находятся новые значения вертикальной координаты поверхности участков лепестка $H_{\pi i}$. Находятся проекции равнодействующей силы давления смазочного слоя:

$$Wx = LR \int_{0}^{2\pi} (P(\varphi) - P_a) \cos(\varphi) d\varphi, \qquad (4)$$
$$Wy = LR \int_{0}^{2\pi} (P(\varphi) - P_a) \sin(\varphi) d\varphi,$$

где L – осевая длина подшипника, $P(\varphi)$ – осредненное по длине подшипника давление смазочного слоя.

Уравнения движения оси симметричного, идеально отбалансированного, имеющего точечную массу ротора в проекциях на оси координат можно записать в следующем виде:

$$0,5ma_x = W_x + 0,5mg,$$
 (5)

$$0,5ma_y = W_y. (6)$$

Новая координата центра цапфы по оси х определяется из выражения:

$$x_0^{j+1} = x_0^j + V_0^j \Delta t + a_x \frac{\Delta t^2}{2},$$
(7)

где $a_x = \frac{W_x + 0.5mg}{0.5m}$ – определяется из уравнения (5).

Проекция скорости центра цапфы на следующей итерации определяется из выражения:

$$V_{0x}^{j+1} = V_{0x}^{j} + a_x \Delta t.$$
 (8)

Новая координата y_0^{j+1} и скорость V_{0y}^{j+1} центра цапфы по оси у определяется аналогично выражениям (5) и (6). Разница заключается лишь в выражении для проекции ускорения: $a_y = \frac{W_y}{0.5m}$.

Следует отметить, что для увеличения точности при интегрировании уравнений движения тела под действием переменных сил часто используются более точные формулы, чем (4) и (5). Однако в данном случае точность вычисления траектории движения цапфы обеспечивается достаточно малым шагом по времени Δt , который требуется для обеспечения сходимости при решении уравнения (1). Расчет по проверке устойчивости системы ЛГП - ротор при действии на ротор возмущающих псевдогироскопических гидромеханических сил в проточных частях и других элементах ротора производится аналогичным образом, только изменяются уравнения движения оси ротора:

$$0,5ma_x = W_x + 0,5mg - C_{xy}y,$$
(9)

$$0,5ma_y = W_y + C_{xy}x,\tag{10}$$

где *С_{ху}* - коэффициент перекрестной жесткости возмущающей гидромеханической силы.

Устойчивость системы ротор - подшипники при заданной частоте вращения проверяется по характеру колебаний центра цапфы. Если в течение нескольких периодов амплитуда колебаний уменьшается или остается постоянной, система считается устойчивой. В противном случае система считается неустойчивой.

Результаты расчетов

Расчет устойчивости проводился для ЛГП с исходными данными, представленными в табл. 1. Окружающая среда – воздух с давлением 0,1 МПа и температурой 25 С°. Изменение температуры смазочного слоя не учитывалось. Максимальная частота вращения при расчетах была ограничена 60 тыс. об/мин, минимальная расчетная частота принята 20 тыс. об/мин. Максимальная амплитуда колебаний оси ротора при расчетах устойчивости составляла 5...15 µm.

Таблица 1.

N⁰	Радиус цапфы, м	Минимальный ра- диальный зазор при центральном положении цапфы, µm	Номинальный приведенный коэффициент жесткости c_0 , $H/m \cdot m^{-2}$ ($H/m \cdot sm^{-2}$)	Номинальный приве- денный коэффициент демпфирования d_0 при амплитуде $A_0 = 5$ µm и давлении $P_0 = 1,01$ МПа, $H \cdot c \cdot m \cdot m^{-2}$	Диапазон масс ро- тора m, кг
1	0,025	10	10 ¹⁴ (жесткая	-	216
2	" "	20	10BepxH0CTb)		" "
2		20	10 (жесткая	-	
			поверхность)		
3	··_··	30	10 ¹⁴ (жесткая	-	"_"
			поверхность)		
4	··_··	10	$5 \cdot 10^9 (5 \cdot 10^5)$	$5 \cdot 10^4$; $2 \cdot 10^5$; $5 \cdot 10^5$	··_··
5	"_"	20	$5 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	
6	"_"	30	$5 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	
7	"_"	10	$2 \cdot 10^9 (5 \cdot 10^5)$	$5 \cdot 10^4$; $2 \cdot 10^5$; $5 \cdot 10^5$	
8	"_"	20	$2 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	··_··
9	"_"	30	$2 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	"_"
10	"_"	10	$1 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	"_"
11	"_"	20	$1 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	"_"
12	"_"	30	$1 \cdot 10^9 (5 \cdot 10^5)$	$2 \cdot 10^5$	"_"

Во всех вариантах профиль высоты поверхности лепестка над корпусом подшипника принят постоянным. На рис. 7. показан профиль толщины смазочного слоя, образованного одним из трех лепестков и цапфой, находящейся в центральном положении, при минимальном радиальном зазоре 20 µm.

Все варианты имеют одинаковый профиль относительной жесткости c_i/c_0 , показанный на рис. 8. Текущий номинальный приведенный коэффициент демпфирования d_0 везде принят равным номинальному значению d_0 .

Рис. /. Профиль толщины смазочного слоя *H* в окруж ном направлении.

Примеры траектории центра цапфы в устойчивом и неустойчивом состоянии представлены на рис. 9 и 10. Прецессия ротора происходит против часовой стрелки. Ротора вращается также против часовой стрелки.

Расчеты частоты вращения ротора на пороге устойчивости с различными вариантами подшипников без воздействия внешних возмущающих сил представлены на рис. 11...14. Поскольку максимальная расчетная частота вращения была ограничена 60 тыс. об/мин, частота вращения 60 тыс. об/мин на графиках показывает, что реальная частота вращения на границе устойчивости больше или равна этой частоте.

На рис. 11 представлена зависимость частоты на пороге устойчивости от массы ротора для подшипника с жесткими опорными поверхностями ($c_0=10^{14}$). Кривые 1, 2 и 3 соответствуют вариантам 1, 2 и 3 табл. 2. Видно, что увеличение радиального зазора резко снижает частоту на пороге устойчивости. Обрыв кривой 3 при массе ротора 6 кг и больше означает, что в этой зоне частота на пороге устойчивости меньше 20 тыс. об/мин.

Реализация радиального зазора 20 для подшипника турбомашины с жесткими поверхностями диаметром 50 мм является трудной задачей, а зазора 10 µm – практически невозможной из-за сложности сохранения таких зазоров постоянными при тепловых деформациях.

Рис. 11. Зависимость частоты на пороге устойчивости от массы ротора для подшипника с жесткими опорными поверхностями (c₀=10¹⁴).

Рис. 12. Зависимость частоты на пороге устойчивости от массы ротора для ЛГП с с₀=5·10⁹.

На рис. 12 представлена зависимость частоты на пороге устойчивости от массы ротора для ЛГП с жесткостью $c_0=5\cdot10^9$. Кривая 1 соответствует вариантам 4 и 5 табл. 2. Кривая 2 соответствует варианту 6 табл. 2. Как видно, высокая устойчивость сохраняется для варианта 4 независимо от величины демпфирования пакета лепестковых элементов. Устойчивость такого ЛГП с зазором 20 µm при росте массы ротора существенно выше, чем у подшипника с жесткими поверхностями. Увеличение зазора до 30 µm также резко снижает устойчивость.

Податливость поверхности лепестков существенно упрощает обеспечение работоспособности ЛГП при тепловых деформациях по сравнению с подшипниками с жесткими опорными поверхностями, поскольку при увеличении диаметра ротора поверхность лепестков отжимается к корпусу подшипника под действием возрастающего давления смазочного слоя.

На рис. 13 представлена зависимость частоты на пороге устойчивости от массы ротора для ЛГП с жесткостью $c_0=2\cdot 10^9$. Кривая 1 соответствует варианту 7 с коэффициентами

демпфирования d_0 , равными 5·10⁴ и 2·10⁵, и варианту 8 табл. 2. Кривая 2 соответствует варианту 7 с коэффициентом демпфирования d_0 , равным 5·10⁵. Видно, что увеличение коэффициента демпфирования упругого пакета снижает частоты на пороге устойчивости. Кривая 3 соответствует варианту 9 с зазором 30 µm. Характер этой кривой принципиально отличается от кривой 3 для жесткого подшипника с таким же зазором (рис. 11), где при увеличении массы частота на пороге устойчивости уменьшается, в то время как на рис. 13 – наоборот, увеличивается.

На рис. 14 представлена зависимость частоты на пороге устойчивости от массы ротора для ЛГП с жесткостью $c_0=1\cdot10^9$ для вариантов 10, 11 и 12 (кривые 1, 2 и 3 соответственно). В отличие от вариантов в жесткостью $c_0=5\cdot10^9$ и $2\cdot10^9$ (рис. 12 и 13), здесь при радиальном зазоре 20 µm при возрастании массы ротора наблюдается снижение частоты на пороге устойчивости. При радиальном зазоре 30 µm по сравнению с ЛГП с жесткостью $c_0=2\cdot10^9$ (кривая 3, рис. 13), здесь наблюдается минимум при частоте на пороге устойчивости для роторов с массой 4...8 кг.

Рис. 13. Зависимость частоты на пороге устойчивости от массы ротора для ЛГП с с₀=2·10⁹.

Рис. 14. Зависимость частоты на пороге устойчивости от массы ротора для ЛГП с с₀=1·10⁹.

В табл. 2 и на рис. 15 представлены результаты расчетов максимального значения коэффициента перекрестной жесткости C_{xy} внешней возмущающей силы при потере устойчивости ротора массой 8 кг для подшипника с жесткими опорными поверхностями и ЛГП с различной жесткостью опорной поверхности подшипников. Расчеты проведены при частотах вращения ротора 20, 30 и 60 тыс. об/мин. Для всех вариантов ЛГП принят одинаковый приведенный номинальный коэффициент демпфирования $d_0 = 2 \cdot 10^5$ H·c·m·m⁻².

Точка 1 на графике соответствует жесткому подшипнику с зазором 20 µm. Частота 20 тыс об/мин выбрана потому, что уже при 30 тыс об/мин ротор неустойчив. Видно, что коэф-

фициента *C*_{*xy*} для этого варианта значительно меньше, чем для жесткого подшипника с зазором 10 µm (точки справа на кривых 2 и 3).

Сравнение зависимости коэффициента C_{xy} от жесткости поверхности подшипника с₀ при частотах вращения 30 и 60 тыс об/мин показывает, что при с₀=1·10⁹ и 2·10⁹ величина C_{xy} практически одинакова. При дальнейшем возрастании с₀ разница C_{xy} при 30 и 60 тыс. об/мин увеличивается ростом частоты вращения.

Таблица 2.

Номер линии	Коэффициент жест-	Частота вращения,	Минимальный ради-	Коэффициент пере-
(точки) на гра-	кости c_0 , H/m·m ⁻²	тыс. об/мин	альный зазор при	крестной жесткости
фике			центральном поло-	<i>С_{ху},</i> Н/м
			жении цапфы, µm	
1	$1 \cdot 10^{14}$	20	20	$7,5 \cdot 10^5$
2	$1 \cdot 10^{9}$	30	10	$5,5.10^{5}$
2	$2 \cdot 10^{9}$	30	10	$1,9.10^{6}$
2	$5 \cdot 10^{9}$	30	10	$8 \cdot 10^{6}$
2	$1 \cdot 10^{10}$	30	10	5,5·10 ⁵
3	$1 \cdot 10^{9}$	60	10	9·10 ⁵
3	$2 \cdot 10^{9}$	60	10	1,2.106
3	$5 \cdot 10^{9}$	60	10	$4,1.10^{5}$
3	$1 \cdot 10^{14}$	60	10	$7,5 \cdot 10^5$

 $\overline{5\cdot 10^5}$ Рис. 15. Зависимость максимального значения коэффициента перекрестной жесткости C_{xy} от коэффициента жесткости c_0 при потере устойчивости ротора массой 4 кг для различных вариантов подшипников (см. табл. 2).

Как видно из графика, при равном зазоре 10 µm коэффициент *С_{ху}* для жесткого подшипника значительно больше, чем у ЛГП. Однако обеспечить поддержание такого малого зазора для жесткого подшипника в турбомашине с учетом возникающих тепловых деформаций практически невозможно.

Выводы

Разработана математическая модель для расчета устойчивости без внешних и с внешними возмущающими псевдогироскопическим силами симметричного ротора в лепестковых газодинамических подшипниках с подкладной гофрированной лентой, имеющих один или несколько лепестков, с возможностью задания нелинейной жесткости и демпфирования пакета упругих элементов ЛГП.

Проведенные расчеты показывают высокую устойчивость лепестковых газодинамических подшипников по сравнению с подшипниками с жесткими опорными поверхностями.

Библиографический список

 Равикович Ю. А. Методология проектирования и динамика роторных систем высокооборотных турбомашин на подшипниках скольжения с жидкостной и газовой смазкой.
 [Текст]: дис. докт. дехн. наук / Равикович Юрий Александрович. М., 1992.

2. Ермилов Ю. И. Устойчивость жесткого симметричного ротора в упруго-демпферных подшипниках скольжения [Текст] / Ю. И. Ермилов //Труды Моск. авиац. инст-т. 2011, № 46, http://www.mai.ru/science/trudy/.

3. Сергеев С. И. Динамика криогенных турбомашин с подшипниками скольжения [Текст] / С. И. Сергеев. М.: Машиностроение, 1973. – 304 с.

4. Mohsen S., Hesmat H, Walton J. On the Frictional Damping Characterization of Compliant Bamp Foils./ Transactions of the ASME. Vol. 125, 2003, pp. 804...813.

Сведения об авторах

Ермилов Юрий Иванович, старший научный сотрудник Московского авиационного института (национальный исследовательский университет) к.т.н., тел.: 8-499-158-49-14; e-mail: yurer@yandex.ru.