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Abstract

The quasi-rigid body formulation views a formation of satellites as a single entity by at-
taching a coordinate frame to the formation that captures its overall orientation. To begin, this
paper reviews the formulation and presents the quasi-rigidbody equations of motion. Then,
a nonlinear controller for a formation is derived using Lyapunov stability theory. System
performance criteria can be met by tuning the proportional and derivative feedback gains. Be-
cause the controller is based upon the quasi-rigid body equations of motion, it can be used to
regulate orientation errors or track a time-varying trajectory for the attitude of the formation;
this is shown through simulation results. Finally, the formulation is used to design two con-
strained reorientation trajectories for formations in deep space, one of which is a single Euler
axis rotation, while the second is motivated by axisymmetric rigid body dynamics. It is shown
that the second approach provides as much as 11% fuel savingsover the Euler axis rotation.

1 INTRODUCTION
Much of the satellite formation flying literature has focused on leader-follower dynamics,

however several studies have considered a formation as a single entity. Constellation templates
[1] and the virtual structure approach [2] embed the satellites within a virtual body, while the
virtual centre [3] captures the average translational motion of a formation. In a previous paper
[4], the authors built upon the work of Cochran et al. [5], formalizing the quasi-rigid body (QRB)
formulation, which is a framework for describing a formation so that it can be controlled as a rigid
body. The formulation does this by attaching a coordinate frame to the formation that captures its
overall orientation in space.

In this paper, it is shown how the formulation can be used to design a closed-loop nonlinear
controller that acts on a formation as a whole. The stabilityand performance characteristics of
this controller are discussed. Then the formulation is usedto design constrained reorientation
trajectories, which can be tracked by the controller. For deep space reorientations, rigid body
theory is used to design a three-axis trajectory that is morefuel efficient than a single-axis rotation.

1.1 Quasi-Rigid Body Formulation
Summarizing the work of the previous paper [4], a satellite formation consists ofN deputy

satellites, numberedi = 1 . . .N, moving relative to a chief satellite denoted byC. As shown in
Figure 1, the inertial position of theith deputy is given by the vectorri, which can be expressed
as the sum of the inertial position of the chief,rc, the known desired position of theith deputy
with respect to the chief,rni/c, and the deviation from that desired position,ρi. If the trajectory of
the chief is assumed to be known and the deputies are modelledas point masses, the generalized
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Figure 1: Deputy Satellites within the QRB Frame

coordinates and the generalized speeds for the satellite formation are, respectively,
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whereθ1, θ2, andθ3 represent the attitude of the so-called QRB coordinate frame, andωB is the
angular velocity of that frame. The origin of this frame coincides with the centre of mass of the
chief, and the axes of the frame are defined in terms of the relative positions of the deputies. From
the previous paper, thexB-axis is aligned with the line joining the chief to the first deputy and
the yB-axis lies in the plane formed by the chief and the first and second deputies. Because the
system has only 3N degrees of freedom there are three excess coordinates, and so this definition
necessarily imposes three constraints on the system. If thecomponents of theith deviation vector
in the QRB frame are labelledui, vi, andwi, the constraints are

v1 = 0 w1 = 0 w2 = 0 (3)

The QRB frame captures the bulk orientation of the satelliteformation because it is defined in
terms of the relative positions of the deputy satellites. Byincorporating the attitude coordinates
into the system description, and in turn the dynamics, the QRB formulation allows the design of
controllers that can regulate the orientation of the satellite formation.

1.2 Equations of Motion
From Blake and Misra [4], the equations of motion (EOM) for a satellite formation derived

using the QRB formulation are
◦◦
ρi − [ω̇×B]ri/c = −2[ω×B]

◦ri/c − [ω×B][ω×B]ri/c −
◦◦rni/c

+
1
mi

Fi − r̈c , i = 1 . . .N (4a)
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Superscript× signifies a cross-product skew-symmetric matrix formed by the components of the
vector the symbol modifies. [I] is the inertia matrix that quantifies the mass distributionof the
deputies about the chief.Fi is the sum of the forces experienced by theith deputy, including the
gravitational force, perturbation forces, and control forces. Γ is the total torque about the chief
satellite resulting from these forces. Eq. (4a) is the translational EOM for theith deputy, while
Eq. (4b) is an angular momentum equation. If the deviation vectors,ρi, are held to zero through
some control effort, and if the chief is located at the centre of mass of the system, the second EOM
collapses to Euler’s rotational equation for a rigid body: [I]ω̇B + [ω×B][ I]ωB = Γ. Eq. (4c) relates
the angular velocity to the time derivative of the attitude,given by the quaternion, ¯qB.

Note that Eq. (4) contains 3N + 3 differential equations. Again, because the system only has
3N degrees of freedom, the differential equations corresponding to deviation componentsv̈1, ẅ1

andẅ2 are dropped. LettingΥ represent the nonlinear terms, in a condensed form, the EOMsare:

[M(q)]ṗ = Υ +
[

F
Γ

]

(5)

where [M(q)] is the symmetric mass matrix.

2 LYAPUNOV CONTROLLER
In this section, a nonlinear Lyapunov controller is designed. The technique of feedback lin-

earization is used to cancel out nonlinear terms and obtain linear dynamic equations for the state
error. Several simplifying assumptions are made for the controller design:

1. The mass of each satellite is much larger than the mass of onboard fuel. Therefore, the
change in the system mass when fuel is expended can be neglected.

2. Onboard thrusters can produce continuous thrust in all three coordinate directions of the
QRB frame.

3. The satellites can be treated as point masses.

4. The location of the chief satellite or reference point is known.

5. State measurements are perfect, i.e. there are no navigation errors.

2.1 Synthesis
Letting the subscript “D” stand for “desired,” the desired orientation for the QRB frame is

given by the quaternion, ¯qD, while the desired angular velocity isωD. The desired position vector
of the ith deputy in the QRB frame is the nominal position vector,rni/c. The errors in position and
speed used for the Lyapunov controller are then

∆q = q − qD = [ρT
1 . . . ρ

T
N ǫ

T ]T (6)
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whereωB/D is the angular velocity of the QRB with respect to the desiredframe, whileǫ is the
vector component of the quaternion, ¯qB/D = [q0 ǫ

T ]T , representing the error in orientation. When
the components of this vector are all zero, the orientation error disappears. Thus, the goal of the
controller is to drive the state error∆x = [∆qT ∆pT ]T to zero making all the deviations, along with
the orientation and angular velocity error, equal to zero. The speed error and the rate of change of
the position error are related by:

∆q̇ = [H]∆p =
[

[E(3N−3)×(3N−3)] [0(3N−3)×1]
[01×(3N−3)] 1

2[B(q̄B/D)]

]

∆p (8)



where [B] = q0[E] + [ǫ×] relates the angular velocity error to the quaternion errorrate, with [E]
representing the identity matrix.

A candidate Lyapunov function for the system is selected as follows:

L =
1
2
∆pT∆p +

1
2
∆qT [K]∆q (9)

where [K] is a symmetric positive definite matrix.L is then a positive definite function of the
system state,x, about the desired state,xD. Setting the rate of change of this function equal to
−∆pT [P]∆p, where [P] is also symmetric positive definite, makesL̇ negative semi-definite so that
L satisfies the criteria for a Lyapunov function. Then, by Lyapunov’s Direct Method, the satellite
formation described by the QRB EOMs is stable about the desired state trajectory.

The dynamic equation for the state error then becomes

∆ṗ + [P]∆p + [H]T [K]∆q = 0 (10)

By substituting Eqs. (5) and (7) into Eq. (10), the control vector can be solved:
[

Fc

Γc

]

= −[M(q)][H]T [K]∆q − [M(q)][P]∆p − Υ + [M(q)]ṗD (11)

Eq. (11) is the Lyapunov controller. The role of each term in this control expression is ap-
parent. The first term is the position error feedback while the second term is the velocity error
feedback. The selection of matrices [K] and [P] determines the dynamics of the state error. Sub-
tractingΥ cancels out the nonlinear terms of the dynamic equation, andso it provides feedback
linearization. The last term is the control effort needed to maintain the desired state trajectory.
Using the Higher Derivative Theorem [6], it can be shown thatthis controller is asymptotically
stable. Thus, providedΥ accurately models the nonlinear dynamics (gravity, perturbations), any
deviations or orientation errors will be driven to zero by the controller.

The Lyapunov controller prescribes a control thrust for each deputy,Fci, having components
along the three coordinate directions, with the exception of deputies 1 and 2. Because components
v1, w1, andw2 are constrained, no thrust is prescribed in those directions. However, the controller
does prescribe a control torque,Γc, to be applied to the QRB. This torque must be obtained by
distributing thrusts among the deputies that define the QRB frame, that is, by thrusting in the
remaining coordinate directions for deputies 1 and 2. Hence, 3N thrust components are fully
specified by this controller.

Assuming that [K] and [P] are block diagonal gain matrices, according to Eq. (11), the control
forces applied to deputies numberedi > 2 are determined by their own state errors, the state of
the chief, but also by the states of deputies 1 and 2, as these determine the orientation error of
the QRB frame. Since the control torque is also determined bythe orientation error of the QRB
frame, this means that the control forces applied to deputies 1 and 2 are determined by the states
of both deputies. There is interdependency between deputies 1 and 2, making this controllercyclic
[7]. If more deputies are involved in the definition of the QRBframe, more dependencies between
deputies result, and controlling the QRB frame affects more of the satellites.

2.2 Gain Selection
If the feedback gain matrices, [K] and [P], are diagonal, and if [B]T ≈ [E] for small ori-

entation error, the dynamic equation for the error, Eq. (10), can be decoupled into second-order
linear constant-coefficient differential equations. For the deviation errors,ρi, the natural frequency
and damping ratio are̟ n =

√
Ki andζ = Pi/(2

√
Ki) while for the orientation error,ǫ, they are

̟n =
√

Kω/2 andζ = Pω/
√

Kω. Provided the damping ratio,ζ, is less than 1, the settling time for
the error isTs ≈ 4/(̟nζ) = 8/P. Hence, the values along the diagonal for matrices [K] and [P]
can be chosen so that the system meets imposed performance specifications.



3 REORIENTATION
A constrained reorientation is a slew manoeuvre during which the deputy satellites maintain

constant relative positions within the QRB frame. There could be several reasons to do this: sci-
entific data collection is to occur during reorientation, collision avoidance is an important mission
requirement, or as mentioned by Beard et al. [8], for interferometry missions, formation acquisi-
tion can be timely and fuel intensive, so sensor lock betweensatellites should be maintained. In
this section, three constrained reorientation trajectories are developed. The Lyapunov controller
can then be used to track these trajectories.

3.1 Single-Axis Rotation
In a deep space environment, the purpose of reorienting a formation would be to image dif-

ferent celestial targets. Differential gravity is negligible in deep space, and a formation can be
at “rest”. The only forces acting on the satellites are control forces, so in Eq. (4),Fi = Fci and
Γ = Γc.

Consider an initial inertial attitude for the QRB frame, ¯qD0 and a final attitude, ¯qD f . With a
step change in the desired attitude, the Lyapunov controller will correct the error, reorienting the
QRB frame while maintaining the shape of the formation. The rate at which the slew occurs will
depend upon the gains of the controller. To more actively specify the rate of slew, a continuously
time-varying orientation for the QRB frame to follow can be specified.

Consider, then, the change in inertial orientation, ¯q f /0, from which the Euler axis,̂e, and Euler
angle,Φ f , can be extracted. A constant rotation rate for the formation about that axis over some
time period [t0, t f ] can be prescribed so that the slew angle increases linearlywith time:

Φ(t) =






0 t < t0
Φ f

t−t0
t f−t0

t0 < t < t f

Φ f t > t f

(12)

The corresponding desired angular velocity trajectory isωD = Φ̇(t)ê. Each deputy satellite will
need to be provided with a centripetal acceleration, directed along the perpendicular line connect-
ing it with the Euler axis. Assuming the Euler axis passes through the origin of the QRB frame,
the total fuel consumption in terms of∆v can be shown to be

∆vT =

N∑

i=1






Φ2
f

t f − t0
||rni/c − rni/c · ê|| + 2

Φ f

t f − t0
||rni/c × ê||





(13)

It is noted that this single-axis manoeuvre is not motivatedby any dynamics.

3.2 Three-Axis Rotation
To reduce fuel consumption, a constrained reorientation should take advantage of the inherent

dynamics of the system. If deputy satellites of equal mass are symmetrically distributed about the
chief, then the theory of axisymmetric bodies can be employed. It was shown by Dixon et al. [9]
that under certain assumptions, the fuel-optimal trajectory for the rest-to-rest reorientation of an
axisymmetric rigid body consists of a series of patched coasting arcs. Limiting the control effort
to two unbounded impulses – one to initiate the manoeuvre, and one to terminate it – the trajectory
follows the natural torque-free precession-nutation-spin motion of the body. The same idea can be
applied to a satellite formation.

It is assumed that the deputy satellites are fixed within the QRB frame and that the formation
is in a deep space environment. Letψ be the precession angle about an inertially fixed axis par-
allel to some unit vector,̂h, passing through the centre of mass of the axisymmetric QRB.Let ϑ



be the nutation angle andφ be the spin angle about the body-fixedzB-axis. The motion of the
axisymmetric QRB in terms of these 3-1-3 Euler angles is given by [9]

ϑ = ϑ(t0)

ψ(t) =
H
It

(t − t0) (14)

φ(t) = ψ(t)

(

It

Ia
− 1

)

cosϑ + φ(t0)

= c(t − t0) + φ(t0)

H = Hĥ is the angular momentum of the QRB, which is constant since the motion is torque-free.
It and Ia are the transverse and axial moments of inertia respectively, extracted from the inertia
matrix, [I]. The angular velocity of the QRB frame expressed in that frame is


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wherec = (1 − Ia/It)ω3(t0). For a given inertial reorientation, ¯q f /0, the nutation angle,ϑ, unit
vector,ĥ, and initial conditions att = t0 can be obtained.

The theory of axisymmetric rigid bodies establishes the torque-free coasting arc for the re-
orientation manoeuvre, but for a QRB, fuel is still expendedduring the manoeuvre to maintain
the rigid configuration. Setting the deviations identically to zero in Eq. (4a) with no gravity or
perturbation terms, the open-loop fuel consumption, in terms of∆v, can be calculated by:

N∑

i=1

∫ t f

t0
||ai||dt =

N∑

i=1

∫ t f

t0
||ω̇B × rni/c + ωB ×

(

ωB × rni/c
)

|| (16)

An impulsive “torque” provides the QRB with an angular momentum to initiate the manoeuvre,
and then another removes it to terminate the manoeuvre. Thistranslates to a change in inertial
velocity for each deputy at the beginning and end of the manoeuvre. The total fuel consumption
is then

∆vT =

N∑

i=1

{∫ t f

t0
||ai ||dt + 2||rni/c × ωB(t0)||

}

(17)

4 SIMULATIONS
A satellite formation consisting ofN = 3 deputies was simulated using Matlab. The deputies

were assigned equal masses of 100 kg each, and distributed symmetrically within theXY plane
of the QRB frame a distanceR = 1 km from the chief to form an equilateral triangle. Newton’s
Second Law was used to represent the dynamics of each satellite: mir̈i = Fi. However, the
Lyapunov controller based on the QRB EOMs was used to track the desired trajectory for the
formation.

Three examples of a constrained reconfiguration in a deep space environment were compared
for an orientation change given by the direction cosine matrix [Rx(π/2)][Ry(π/2)]. Subscripts
x and y signify body-fixed rotations about those axes. The formation was simulated with the
feedback gain matrices set to [K] = 64× 10−8[E] and [P] = 7× 10−4[E]. The time interval for the
manoeuvres was 20000 seconds.



Table 1: Comparison of Fuel Consumed by Euler Axis and Three-Axis Deep Space Manoeuvres

∆v (m/s)
Step Analytical κ = 0.1 κ = 0.5

Euler 3-Axis Euler 3-Axis Euler 3-Axis
Sat 1 0.5188 0.3501 0.3217 0.3695 0.3418 0.4921 0.4646
Sat 2 0.6211 0.4191 0.4105 0.4423 0.4375 0.5891 0.6007
Sat 3 0.3907 0.2636 0.2139 0.2782 0.2208 0.3705 0.2727
Total 1.5306 1.0328 0.9462 1.0901 1.0002 1.4517 1.3380
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Figure 2: Comparison of Satellite Trajectories for Deep Space Manoeuvres
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Figure 3: Comparison of Angular Velocity for Deep Space Manoeuvres,κ = 0.1

Table 1 compares the fuel consumed by the satellites for a step change in the desired orienta-
tion, for a single rotation about the Euler axis, and for the combined precession-spin motion of the
three-axis manoeuvre. The theoretical fuel requirements,as calculated by Eqs. (13) and (17) are
compared with simulation results. Note that Eqs. (12) and (14) prescribe linear changes in orien-
tation angles, ramping from an initial value to a final value.This corresponds to a sudden change
in the angular rates of the QRB frame, necessitating a suddenchange in the momentum of each
deputy. To avoid near impulsive control forces, the ramp is smoothed at the beginning and end of
the manoeuvre.κ represents the fraction of the manoeuvre time over which there is smoothing.

From the results, it can be seen that the step manoeuvre consumed the most fuel. A smaller
smoothing factor,κ, reduced the fuel consumption of the Euler axis and three-axis manoeuvres.
The three-axis manoeuvre consumed less total fuel than the Euler axis manoeuvre. Fuel consump-
tion was not balanced across the deputies.
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Figure 4: Percentage Fuel Savings of
Three-Axis Deep Space Manoeuvre

Figure 2 compares the three-dimensional (3D) tra-
jectories followed by the three deputies, while Figure 3
compares the angular velocity of the QRB frame for the
three manoeuvres, withκ = 0.1. With the step reorien-
tation, the QRB frame actually rotates about the Euler
axis, generating the same 3D trajectory as the Euler axis
rotation. However, as shown in Figures 3a and 3b, the
rate of rotation differs, which explains the difference in
fuel consumption. For the three-axis manoeuvre, the 3D
trajectory is different (Figure 2c). Comparing Figures 3b
and 3c, for the Euler axis manoeuvre, the angular veloc-
ity was constant in the middle of the manoeuvre, whereas
it varied for the three-axis manoeuvre. This change pro-
vided the fuel savings.

To fully quantify the advantage of the three-axis manoeuvreover the Euler axis manoeuvre,
Figure 4 plots the percent savings in fuel for a general final orientation [Rx(θx)][Ry(θy)], as calcu-
lated by Eqs. (13) and (17). For small changes in orientation, the advantage is small. In fact, the
manoeuvres are identical when the rotation is only about thexB-axis or only theyB-axis. But, for
θx = 170◦ andθy = 75◦, there is a maximum total fuel savings of 11%. The savings is independent
of the manoeuvre time.

5 CONCLUSION
This paper presented the design of a nonlinear controller based upon the equations of motion

from the QRB formulation. The advantage of this controller is that it acts upon a satellite formation
as a whole, regulating the attitude of the formation. Simulations showed that the controller could
correct orientation errors as well as track time-varying trajectories for the attitude. This paper
presented two such trajectories and showed that the three-axis reorientation trajectory obtained
from axisymmetric rigid body dynamics offers fuel savings for large angle manoeuvres.
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