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Abstract

The quasi-rigid body formulation views a formation of shtie$ as a single entity by at-
taching a coordinate frame to the formation that captusamvérall orientation. To begin, this
paper reviews the formulation and presents the quasi-bigdy equations of motion. Then,
a nonlinear controller for a formation is derived using Lyapv stability theory. System
performance criteria can be met by tuning the proportiondlderivative feedback gains. Be-
cause the controller is based upon the quasi-rigid bodytemsaof motion, it can be used to
regulate orientation errors or track a time-varying trigegfor the attitude of the formation;
this is shown through simulation results. Finally, the fatation is used to design two con-
strained reorientation trajectories for formations inglepace, one of which is a single Euler
axis rotation, while the second is motivated by axisymmaetgid body dynamics. It is shown
that the second approach provides as much as 11% fuel saxiagthe Euler axis rotation.

1 INTRODUCTION

Much of the satellite formation flying literature has focdsen leader-follower dynamics,
however several studies have considered a formation agjke @ntity. Constellation templates
[1] and the virtual structure approach [2] embed the sédsllivithin a virtual body, while the
virtual centre [3] captures the average translational emotif a formation. In a previous paper
[4], the authors built upon the work of Cochran et al. [5]n@alizing the quasi-rigid body (QRB)
formulation, which is a framework for describing a formatiso that it can be controlled as a rigid
body. The formulation does this by attaching a coordinae# to the formation that captures its
overall orientation in space.

In this paper, it is shown how the formulation can be used &igtkea closed-loop nonlinear
controller that acts on a formation as a whole. The stabditgd performance characteristics of
this controller are discussed. Then the formulation is usedesign constrained reorientation
trajectories, which can be tracked by the controller. Fapdspace reorientations, rigid body
theory is used to design a three-axis trajectory that is fumlesfficient than a single-axis rotation.

1.1 Quasi-Rigid Body Formulation

Summarizing the work of the previous paper [4], a satellitarfation consists oN deputy
satellites, numbered= 1...N, moving relative to a chief satellite denoted By As shown in
Figure 1, the inertial position of th& deputy is given by the vectar, which can be expressed
as the sum of the inertial position of the chief, the known desired position of tH& deputy
with respect to the chief,,c, and the deviation from that desired positipg, If the trajectory of
the chief is assumed to be known and the deputies are moaeallpdint masses, the generalized
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Figure 1: Deputy Satellites within the QRB Frame

coordinates and the generalized speeds for the satelliteafmn are, respectively,
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where6, 6,, anddsz represent the attitude of the so-called QRB coordinate draandwsg is the
angular velocity of that frame. The origin of this frame addes with the centre of mass of the
chief, and the axes of the frame are defined in terms of thévelaositions of the deputies. From
the previous paper, thes-axis is aligned with the line joining the chief to the firstpdgy and
the yg-axis lies in the plane formed by the chief and the first anediséadeputies. Because the
system has onlyI8 degrees of freedom there are three excess coordinatesp dhig slefinition
necessarily imposes three constraints on the system. tfatmponents of thé" deviation vector
in the QRB frame are labellad, v;, andw;, the constraints are

vi=0 w; =0 w, =0 (3

The QRB frame captures the bulk orientation of the satdliteation because it is defined in
terms of the relative positions of the deputy satellites. il8yorporating the attitude coordinates
into the system description, and in turn the dynamics, th& @Rmulation allows the design of
controllers that can regulate the orientation of the dtadibrmation.

1.2 Equationsof Motion
From Blake and Misra [4], the equations of motion (EOM) foratedlite formation derived
using the QRB formulation are
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Superscript* signifies a cross-product skew-symmetric matrix formedhegyd¢omponents of the
vector the symbol modifies.l] is the inertia matrix that quantifies the mass distributafrthe
deputies about the chieF; is the sum of the forces experienced by fiedeputy, including the
gravitational force, perturbation forces, and controcés. I is the total torque about the chief
satellite resulting from these forces. Eq. (4a) is the teimmal EOM for thei™ deputy, while
Eg. (4b) is an angular momentum equation. If the deviatiartors, p;, are held to zero through
some control fort, and if the chief is located at the centre of mass of theegysthe second EOM
collapses to Euler’s rotational equation for a rigid bodyw + [wi][I]Jws = I'. Eq. (4C) relates
the angular velocity to the time derivative of the attitugigen by the quaterniorgg.

Note that Eq. (4) containsNB+ 3 differential equations. Again, because the system only has
3N degrees of freedom, theffrential equations corresponding to deviation componants;
andw, are dropped. Lettindf represent the nonlinear terms, in a condensed form, the EAD&Is
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where M(q)] is the symmetric mass matrix.

2 LYAPUNQOV CONTROLLER
In this section, a nonlinear Lyapunov controller is destyn&€he technique of feedback lin-
earization is used to cancel out nonlinear terms and obitaad dynamic equations for the state
error. Several simplifying assumptions are made for theroter design:

1. The mass of each satellite is much larger than the masshafapth fuel. Therefore, the
change in the system mass when fuel is expended can be meglect

2. Onboard thrusters can produce continuous thrust in adktieoordinate directions of the
QRB frame.

3. The satellites can be treated as point masses.
4. The location of the chief satellite or reference pointriewn.

5. State measurements are perfect, i.e. there are no riavigators.

2.1 Synthesis

Letting the subscript D" stand for “desired,” the desired orientation for the QRBMfie is
given by the quaterniorgp, while the desired angular velocity ésp. The desired position vector
of thei™ deputy in the QRB frame is the nominal position vectay,c. The errors in position and
speed used for the Lyapunov controller are then

Ag=q-ap=[p] ... py €1 (6)
Ap=p-po=[p; ... Py wgpl’ (7)

wherewg,p is the angular velocity of the QRB with respect to the desfrathe, whilee is the
vector component of the quaterniagsp = [o €']", representing the error in orientation. When
the components of this vector are all zero, the orientatioor @lisappears. Thus, the goal of the
controller is to drive the state errax = [Aq" Ap']" to zero making all the deviations, along with
the orientation and angular velocity error, equal to zettwe 3peed error and the rate of change of
the position error are related by:

- [Ean-3)x@3N-3)]  [O@@N-3)x1]
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where B] = qo[E] + [€*] relates the angular velocity error to the quaternion erate, with [E]
representing the identity matrix.
A candidate Lyapunov function for the system is selectedbmis:

L= %ApTAp + %AqT[K]Aq 9)

where K] is a symmetric positive definite matrixL is then a positive definite function of the
system statex, about the desired statep. Setting the rate of change of this function equal to
—ApT[P]Ap, where P] is also symmetric positive definite, makesiegative semi-definite so that
L satisfies the criteria for a Lyapunov function. Then, by lyagv’'s Direct Method, the satellite
formation described by the QRB EOMs is stable about the el@sitate trajectory.

The dynamic equation for the state error then becomes

Ap + [P]Ap + [H]T[K]Ag = 0 (10)
By substituting Eqgs. (5) and (7) into Eq. (10), the contrattee can be solved:
| - -M@IHITTKIA - M@ITPIap - 1+ (M(@Tpo a

Eq. (11) is the Lyapunov controller. The role of each termhiis tontrol expression is ap-
parent. The first term is the position error feedback whike gecond term is the velocity error
feedback. The selection of matricd€][and [P] determines the dynamics of the state error. Sub-
tracting X’ cancels out the nonlinear terms of the dynamic equation,saritiprovides feedback
linearization. The last term is the contrdf@t needed to maintain the desired state trajectory.
Using the Higher Derivative Theorem [6], it can be shown thé controller is asymptotically
stable. Thus, providel' accurately models the nonlinear dynamics (gravity, pbetions), any
deviations or orientation errors will be driven to zero bg ttontroller.

The Lyapunov controller prescribes a control thrust fothedeputy,Fq, having components
along the three coordinate directions, with the exceptfateputies 1 and 2. Because components
V1, W1, andw, are constrained, no thrust is prescribed in those dirextiBlowever, the controller
does prescribe a control torqui;, to be applied to the QRB. This torque must be obtained by
distributing thrusts among the deputies that define the QRRBé, that is, by thrusting in the
remaining coordinate directions for deputies 1 and 2. HeBbkthrust components are fully
specified by this controller.

Assuming thatK] and [P] are block diagonal gain matrices, according to Eq. (1B abntrol
forces applied to deputies numberied 2 are determined by their own state errors, the state of
the chief, but also by the states of deputies 1 and 2, as theteardne the orientation error of
the QRB frame. Since the control torque is also determinethéyorientation error of the QRB
frame, this means that the control forces applied to depdtiand 2 are determined by the states
of both deputies. There is interdependency between deguted 2, making this controlleyclic
[7]. If more deputies are involved in the definition of the QR&me, more dependencies between
deputies result, and controlling the QRB frantieats more of the satellites.

2.2 Gain Selection

If the feedback gain matricesK] and [P], are diagonal, and iff]" ~ [E] for small ori-
entation error, the dynamic equation for the error, Eq.,(t@h be decoupled into second-order
linear constant-cdicient diferential equations. For the deviation errgrs the natural frequency
and damping ratio arer, = VK; and¢ = P;/(2VK;) while for the orientation errore, they are
@n = VK, /2 andZ = P,/ VK. Provided the damping ratig, is less than 1, the settling time for
the error isTs ~ 4/(wnd) = 8/P. Hence, the values along the diagonal for matrié¢€sgnd [P]
can be chosen so that the system meets imposed performauifcsgpions.



3 REORIENTATION
A constrained reorientation is a slew manoeuvre during which the depuiilgas maintain

constant relative positions within the QRB frame. Thereldde several reasons to do this: sci-
entific data collection is to occur during reorientationllisimn avoidance is an important mission
requirement, or as mentioned by Beard et al. [8], for interfeetry missions, formation acquisi-
tion can be timely and fuel intensive, so sensor lock betvgadeallites should be maintained. In
this section, three constrained reorientation trajeetodre developed. The Lyapunov controller
can then be used to track these trajectories.

3.1 Single-AxisRotation

In a deep space environment, the purpose of reorientingnaation would be to image dif-
ferent celestial targets. Bérential gravity is negligible in deep space, and a fornmatian be
at “rest”. The only forces acting on the satellites are arftrces, so in Eq. (4)F = Fq and
r=r..

Consider an initial inertial attitude for the QRB frantg,p and a final attitudeqps. With a
step change in the desired attitude, the Lyapunov contrailécorrect the error, reorienting the
QRB frame while maintaining the shape of the formation. Tdte at which the slew occurs will
depend upon the gains of the controller. To more activelgifpéhe rate of slew, a continuously
time-varying orientation for the QRB frame to follow can esified.

Consider, then, the change in inertial orientatigye, from which the Euler axis, and Euler
angle,®¢, can be extracted. A constant rotation rate for the formagioout that axis over some
time period fo, t¢] can be prescribed so that the slew angle increases ling@hytime:

0 o t<tp
O(t) ={ D¢ ﬁ to <t<tg (12)
OF: t>tf

The corresponding desired angular velocity trajectorpds= ®(t)&. Each deputy satellite will
need to be provided with a centripetal acceleration, distalong the perpendicular line connect-
ing it with the Euler axis. Assuming the Euler axis passesugh the origin of the QRB frame,
the total fuel consumption in terms A¥ can be shown to be

N 2
Avr = Z i||rni/c_rni/c‘éHWLZ&Hrni/CXéH (13)
= ti — 1o ti — 1o

It is noted that this single-axis manoeuvre is not motivdtgdny dynamics.

3.2 Three-Axis Rotation

To reduce fuel consumption, a constrained reorientatioulsitake advantage of the inherent
dynamics of the system. If deputy satellites of equal masswmnmetrically distributed about the
chief, then the theory of axisymmetric bodies can be employtevas shown by Dixon et al. [9]
that under certain assumptions, the fuel-optimal trajgctor the rest-to-rest reorientation of an
axisymmetric rigid body consists of a series of patchedtazgsircs. Limiting the control féort
to two unbounded impulses — one to initiate the manoeuviepaa to terminate it — the trajectory
follows the natural torque-free precession-nutatiomspotion of the body. The same idea can be
applied to a satellite formation.

It is assumed that the deputy satellites are fixed within tR8@ame and that the formation
is in a deep space environment. Liebe the precession angle about an inertially fixed axis par-
allel to some unit vectof), passing through the centre of mass of the axisymmetric QRBY



be the nutation angle antlbe the spin angle about the body-fixegtaxis. The motion of the
axisymmetric QRB in terms of these 3-1-3 Euler angles isrgiwe[9]

¥ = 9(to)
wm=%a4@ (14)

¢m=wﬁﬁ—ﬁww+ﬂm
= c(t — to) + ¢(to)

H = Hh is the angular momentum of the QRB, which is constant sineerthtion is torque-free.
It and |, are the transverse and axial moments of inertia respegtigetracted from the inertia
matrix, [I]. The angular velocity of the QRB frame expressed in thah&as

w1 (t) cosc(t—tg) sinc(t—ty) O .smﬁsm(to)
lwz(t)‘ l—smc(t—to) cosc(t—to) O‘ = sind cose(to) (15)
ws(t) 1 cosi

wg(to)

wherec = (1 - la/ly)ws(to). For a given inertial reorientatioms o, the nutation angleg, unit
vector,h, and initial conditions at = t, can be obtained.

The theory of axisymmetric rigid bodies establishes thqueffree coasting arc for the re-
orientation manoeuvre, but for a QRB, fuel is still expendieding the manoeuvre to maintain
the rigid configuration. Setting the deviations identigath zero in Eq. (4a) with no gravity or
perturbation terms, the open-loop fuel consumption, imgeofAv, can be calculated by:

N ts N tf
> ||au||dt=Zf g X rijc + wg X (@8 X Trifc) | (16)
i=1 Yo i=1 vl

An impulsive “torque” provides the QRB with an angular mortuen to initiate the manoeuvre,
and then another removes it to terminate the manoeuvre. tinislates to a change in inertial
velocity for each deputy at the beginning and end of the mawrae The total fuel consumption
is then

N

s
Avr =) { lasliclt + 2] pijc X wB(to)n} (17)
to

i=1

4 SIMULATIONS

A satellite formation consisting dfl = 3 deputies was simulated using Matlab. The deputies
were assigned equal masses of 100 kg each, and distributededyically within theXY plane
of the QRB frame a distand® = 1 km from the chief to form an equilateral triangle. Newton'’s
Second Law was used to represent the dynamics of each teatefii; = F;. However, the
Lyapunov controller based on the QRB EOMs was used to traeldésired trajectory for the
formation.

Three examples of a constrained reconfiguration in a deage spavironment were compared
for an orientation change given by the direction cosine Ry (r/2)][Ry(7/2)]. Subscripts
x andy signify body-fixed rotations about those axes. The fornmati@s simulated with the
feedback gain matrices set t§][ = 64 x 10°8[E] and [P] = 7 x 10~*[E]. The time interval for the
manoeuvres was 20000 seconds.



Table 1: Comparison of Fuel Consumed by Euler Axis and Thoae-Deep Space Manoeuvres

Av (my/s)
Step Analytical k=01 k=05
Euler | 3-Axis | Euler | 3-Axis | Euler | 3-Axis
Sat1| 0.5188| 0.3501| 0.3217| 0.3695| 0.3418| 0.4921| 0.4646
Sat2| 0.6211| 0.4191| 0.4105| 0.4423| 0.4375| 0.5891| 0.6007
Sat 3| 0.3907| 0.2636| 0.2139| 0.2782| 0.2208| 0.3705| 0.2727
Total | 1.5306| 1.0328| 0.9462| 1.0901| 1.0002| 1.4517| 1.3380
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Figure 2: Comparison of Satellite Trajectories for Deepcegdanoeuvres
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Figure 3: Comparison of Angular Velocity for Deep Space Manoesx = 0.1

Table 1 compares the fuel consumed by the satellites fopacki@nge in the desired orienta-
tion, for a single rotation about the Euler axis, and for thmbined precession-spin motion of the
three-axis manoeuvre. The theoretical fuel requiremergsalculated by Egs. (13) and (17) are
compared with simulation results. Note that Egs. (12) add ptescribe linear changes in orien-
tation angles, ramping from an initial value to a final vallibis corresponds to a sudden change
in the angular rates of the QRB frame, necessitating a sudid@nge in the momentum of each
deputy. To avoid near impulsive control forces, the ramprisahed at the beginning and end of
the manoeuvrex represents the fraction of the manoeuvre time over whictetisesmoothing.

From the results, it can be seen that the step manoeuvremedstine most fuel. A smaller
smoothing factork, reduced the fuel consumption of the Euler axis and thrée+aanoeuvres.
The three-axis manoeuvre consumed less total fuel thanulee &is manoeuvre. Fuel consump-
tion was not balanced across the deputies.



Figure 2 compares the three-dimensional (3D) tra-
jectories followed by the three deputies, while Figure 3
compares the angular velocity of the QRB frame for theio
three manoeuvres, with= 0.1. With the step reorien-
tation, the QRB frame actually rotates about the Eulgr s
axis, generating the same 3D trajectory as the Euler aXis
rotation. However, as shown in Figures 3a and 3b, theo
rate of rotation dfers, which explains the fierence in ~ **°
fuel consumption. For the three-axis manoeuvre, the 3D 50
trajectory is dfferent (Figure 2c). Comparing Figures 3b % (@9 00 8, (deg)
and 3c, for the Euler axis manoeuvre, the angular veloc- )
ity was constant in the middle of the manoeuvre, where&ddure 4: Percentage Fuel Savings of
it varied for the three-axis manoeuvre. This change prol "fé€-Axis Deep Space Manoeuvre
vided the fuel savings.

To fully quantify the advantage of the three-axis manoewwer the Euler axis manoeuvre,
Figure 4 plots the percent savings in fuel for a general finahtation Rx(6x)I[R,(6y)], as calcu-
lated by Egs. (13) and (17). For small changes in orientattomadvantage is small. In fact, the
manoeuvres are identical when the rotation is only aboukghkaxis or only theyg-axis. But, for
0x = 170 andéy = 75°, there is a maximum total fuel savings of 11%. The savingsdependent
of the manoeuvre time.

100

5 CONCLUSION
This paper presented the design of a nonlinear controllsezdapon the equations of motion
from the QRB formulation. The advantage of this controléethiat it acts upon a satellite formation
as a whole, regulating the attitude of the formation. Simaites showed that the controller could
correct orientation errors as well as track time-varyirgjetttories for the attitude. This paper
presented two such trajectories and showed that the tiiseeorientation trajectory obtained
from axisymmetric rigid body dynamicdters fuel savings for large angle manoeuvres.
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