
Труды МАИ. 2025. № 145. 

Trudy MAI. 2025. No. 145. (In Russ.) 

 

 
 

Научная статья 
УДК 517.977.5 
URL: https://trudymai.ru/published.php?ID=186897   
EDN: https://www.elibrary.ru/AFJZPG  

 

ОПТИМИЗАЦИЯ АЛГОРИТМА ПРЕДОТВРАЩЕНИЯ СТОЛКНОВЕНИЙ В 

ВОЗДУХЕ НА ОСНОВЕ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ С 

РЕСУРСНЫМИ ОГРАНИЧЕНИЯМИ  

 

Е.С. Неретин1, Л. Цзочэн2 

1Филиал публичного акционерного общества "Яковлев" - Центр комплексирования, 

Москва, Россия 

2Северо-Западныи  политехническии  университет, Сиань, Китаи  

evgeny.neretin@ic.yakovlev.ru 

Цитирование: Неретин Е.С., Цзочэн Л. Оптимизация алгоритма предотвращения столкновении  
в воздухе на основе обучения с подкреплением с ресурсными ограничениями // 
Труды МАИ. 2025. № 145. URL: https://trudymai.ru/published.php?ID=186897   
 

Аннотация. С увеличением плотности воздушного трафика возрастает 

необходимость в эффективных системах предотвращения столкновений в 

воздухе. Традиционные системы, такие как TCAS, хотя и эффективно 

поддерживают безопасность, сталкиваются с трудностями в адаптации и 

оптимизации в современных сложных условиях. Чтобы преодолеть эти 

ограничения, мы применяем обучение с подкреплением (RL) в рамках 

марковского процесса принятия решений с ограничениями по ресурсам (RC-MDP), 

вводя управление виртуальными ресурсами для сокращения числа ложных 

тревог. Мы предлагаем бонус за время и ресурсы (TRB) для модификации 

алгоритмов DQN и SAC в DQNTRB и SACTRB, которые поощряют эффективное 

использование ресурсов при сохранении эффективности предотвращения 

столкновений. Результаты экспериментов показывают, что эти 

модифицированные алгоритмы значительно сокращают количество ложных 
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тревог, достигая почти аналогичной эффективности по сравнению с алгоритмами 

без ограничений. 

Ключевые слова: реакция пилота, глубокое обучение с подкреплением, 

воздушное столкновение, марковский процесс принятия решений, динамическое 

программирование 
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Abstract. As air traffic density continues to rise with the advancement of aviation 

technology, the demand for efficient and reliable airborne collision avoidance systems 

becomes increasingly urgent. Traditional systems, such as the Traffic Collision Avoidance 

System (TCAS), mainly rely on heuristic rules and parameter settings, which, although 

effective in maintaining safety, struggle to adapt and optimize under the complexities of 

modern aviation environments. To address these limitations, we explore the application 

of reinforcement learning (RL) to optimize the performance of collision avoidance 

systems. We define the problem within a resource-constrained Markov decision process 

(RC-MDP) framework, incorporating virtual resource management to control the 

frequency of nuisance alerts, which are frequent alarms that do not require actual 

evasive action. We propose a novel time-resource bonus (TRB) mechanism to modify and 

enhance two standard RL algorithms, DQN and SAC, into DQNTRB and SACTRB. This 

approach encourages resource-efficient actions while maintaining collision avoidance 

performance. Our experimental results demonstrate that these modified algorithms 
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significantly reduce nuisance alerts while achieving near-equivalent collision avoidance 

performance compared to algorithms without resource constraints. 

Keywords: pilot respond, deep reinforcement learning, airborne collision avoidance, 

markov decision-making process, dynamic programming. 

 

Введение 

С быстрым развитием авиационных технологии  плотность воздушного 

трафика неуклонно увеличивается, что ведет к необходимости более 

эффективных и надежных систем предотвращения столкновении  в воздухе. 

Традиционные системы, такие как система предотвращения столкновении  в 

воздухе (TCAS), в основном полагаются на эвристические правила и настрои ки 

параметров, которые, хотя и эффективны для обеспечения безопасности, 

сталкиваются с проблемами при оптимизации и развитии в условиях все более 

сложных авиационных сред [1, 2]. Недавние исследования сосредоточены на 

повышении автоматизации и надежности алгоритмов предотвращения 

столкновении  [3, 4, 5], улучшении использования аппаратных средств в 

авиационных системах [6, 7], решении проблем предотвращения столкновении  

между несколькими воздушными судами [8], а также использовании технологии 

автоматического зависимого наблюдения – вещания (ADS-B) для повышения 

эффективности предотвращения столкновении  [9]. 

Обучение с подкреплением (RL), метод безнадзорного обучения, широко 

применяется для решения различных задач по уклонению от препятствии  и 

принятия решении  [8, 10, 11]. Основная идея RL заключается в постояннои  

оптимизации политик путем взаимодеи ствия с окружающеи  средои  для 

максимизации накопленных вознаграждении . При применении традиционных 

алгоритмов RL к задаче предотвращения столкновении  воздушного движения мы 

обнаружили, что, хотя RL эффективно решает задачи предотвращения 

столкновении  и планирования трафика, его производительность в уменьшении 

количества ложных тревог оказалась неудовлетворительнои  [12]. Для решения 

этои  проблемы мы ввели концепцию виртуальных ресурсов — когда каждое 

предупреждение о столкновении потребляет определенное количество 
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виртуальных ресурсов, и система запрещает выдачу дальнеи ших предупреждении  

при их исчерпании. Эта задача может рассматриваться как проблема RL с 

ограниченными ресурсами, где ключом к успешному принятию решении  является 

эффективное управление ресурсами при выполнении основнои  задачи [13, 14]. 

В даннои  статье сначала излагаются основные принципы алгоритмов RL, 

которые мы применили к задаче предотвращения столкновении , включая 

алгоритмы Deep Q-Network (DQN) и Soft Actor-Critic (SAC). Затем мы устанавливаем 

основную структуру задачи конфликта между двумя воздушными судами, 

охватывая пространства состоянии  и деи ствии , функции вознаграждения для 

основнои  и вспомогательнои  задач, а также показатели оценки 

производительности алгоритмов. Мы анализируем различия в 

производительности этих двух алгоритмов при решении задач предотвращения 

столкновении  как с ресурсными ограничениями, так и без них. Мы обнаружили, 

что в условиях ограничении  по ресурсам оба алгоритма демонстрируют слабые 

результаты и низкую эффективность использования образцов. Дополнительныи  

экспериментальныи  анализ показал, что исследование агентом среды часто 

ограничивается количеством ресурсов, и доступные деи ствия зависят от 

оставшихся ресурсов. Оба алгоритма, DQN и SAC, склонны быстро расходовать 

ресурсы, ограничивая последующую разведку. 

Для решения этои  проблемы мы расширили марковскии  процесс принятия 

решении  (MDP) до MDP с ограниченными ресурсами, введя управление ресурсами 

[14, 15], и предложили новыи  механизм бонуса за время и ресурсы (TRB). Мы 

модифицировали стандартные алгоритмы SAC и DQN в SACTRB и DQNTRB 

соответственно. Эти алгоритмы побуждают агента экономить ресурсы, выполняя 

задачи по предотвращению столкновении  и сокращая количество ложных тревог, 

тем самым исследуя состояния с более широким набором возможных опции . 

Наконец, мы провели эксперименты для оценки производительности 

оптимизированных алгоритмов. Результаты показывают, что в условиях 

ограниченных ресурсов оптимизированные алгоритмы значительно превосходят 

традиционные алгоритмы как в эффективности предотвращения столкновении , 

так и в снижении количества ложных тревог. По сравнению с алгоритмами без 
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ограничении  по ресурсам оптимизированные алгоритмы достигли почти 

аналогичнои  производительности в планировании столкновении , значительно 

сократив частоту ложных тревог. 

Предварительные сведения 

В этом разделе мы представляем модельныи  каркас и основные алгоритмы, 

используемые в нашем исследовании. 

1） Марковский процесс принятия решений  

Марковскии  процесс принятия решении  — это математическая структура, 

используемая для моделирования последовательных задач принятия решении , 

которая определяется кортежем (S,A,p,r,γ), где st∈S — состояние в момент времени 

t, at∈A — деи ствие, совершаемое агентом в момент времени t в результате 

процесса принятия решении , rt = R(st, at, st+1)— вознаграждение, получаемое 

агентом в результате выполнения деи ствия at из состояния st и перехода в 

состояние st+1, а p(st, a, st+1) — функция переходов, которая отображает вероятность 

 1 ,t t tp s s a  перехода в состояние st+1 при выполнении деи ствия at из состояния st. 

γ∈[0,1] — это коэффициент дисконтирования, используемыи  для взвешивания 

мгновенных вознаграждении  по отношению к будущим. Цель MDP заключается в 

нахождении оптимальнои  стратеги 
 a s

, которая максимизирует ожидаемую 

накопленную дисконтированную награду: 

    0

0

,E t

t t

t

V s R s a s s 




 
  

 
                                        (1) 

2） Глубокая Q-сеть (DQN)  

Глубокая Q-сеть (DQN) [16, 17] — это алгоритм обучения с подкреплением, 

основанныи  на Q-обучении, которыи  использует неи ронные сети для 

аппроксимации функции Q-значении  Q(s,a), решая проблему многомерных 

пространств состоянии . Функция Q-значении  представляет ожидаемую 

накопленную награду за выполнение деи ствия a в состоянии s. DQN обновляет Q-

значения по следующеи  формуле: 
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       , , max , ,
a

Q s a Q s a r Q s a Q s a


     
 

                             (2) 

Где α—это скорость обучения, γ—это коэффициент дисконтирования, r—это 

немедленное вознаграждение, а s′—это следующее состояние после выполнения 

деи ствия a. DQN также использует повторное проигрывание опыта для 

уменьшения корреляции между выборками и целевую сеть для улучшения 

стабильности обучения.  

3） Мягкий актор-критик (SAC) 

Мягкии  актор-критик (SAC) [18] — это алгоритм обучения с подкреплением 

(off-policy), которыи  объединяет методы градиента политики с регуляризациеи  

энтропии для балансировки исследования и эксплуатации. Цель SAC — 

максимизировать как ожидаемое вознаграждение, так и энтропию политики, 

поощряя более исследовательское поведение. Оптимизационная цель:   

       ,

0

,E
t t

t

s a t t t

t

J R s a s   




 
   

 
 H                               (3) 

Где α — это параметр температуры, а   ts H — это энтропия политики в 

состоянии st.. SAC особенно подходит для пространств с непрерывными 

деи ствиями, улучшая исследование с помощью регуляризации энтропии. В 

данном исследовании, для применения алгоритма SAC к задаче предотвращения 

столкновении , мы внесли соответствующие корректировки как в пространство 

состоянии , так и в пространство деи ствии , чтобы лучше соответствовать 

операционным требованиям задачи.   

 

Постановка задачи 

Мы формулируем задачу предотвращения столкновений в воздухе между 

двумя самолетами как MDP и решаем ее с помощью алгоритмов обучения с 

подкреплением. В этом разделе мы представляем динамическую модель 

самолетов в конфликтной ситуации и даем подробное описание пространств 

состояний и действий. Кроме того, мы строим функцию вознаграждения, 
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основанную на целях предотвращения столкновений и уменьшения количества 

ложных тревог. Также мы устанавливаем метрики оценки для анализа 

эффективности алгоритмов. 

1) Определение пространства состоянии  и деи ствии    

Для поддержания согласованности с TCAS, в даннои  статье акцент делается 

на вертикальном избегании столкновении  [4]. Пространство состоянии  для 

задачи предотвращения столкновении  состоит из пяти переменных. Таблица 1 

описывает эти переменные и их диапазоны, а на Рисунке 1 представлено их 

визуальное отображение. Первые три переменные описывают относительные 

положения и вертикальные скорости собственного и вторгающегося самолета. 

Четвертая переменная, τ, обобщает горизонтальную геометрию, указывая время 

до того, как горизонтальное расстояние между двумя самолетами станет менее 

500 футов, и это также определяется временем до конфликта (Time to Conflict, 

TTC). Включение предыдущего совета в пространство состоянии  позволяет нам 

штрафовать за изменения или усиления советов, сохраняя марковское свои ство.  

Таблица 1  

Переменные пространства состояний 

 

Переменная Описание Значения 
Единицы 

измерения 

h 

Относительная 

высота 

нарушителя 

[-2500, 

2500] 
ft 

 

Вертикальная 

скорость 

собственного 

самолета 

[-70, 70] ft/s 

 

Вертикальная 

скорость 

нарушителя 

[-50, 50] ft/s 

 

Время до потери 

горизонтального 

разделения (TTC) 

[0, 40] s 

aprev 
Предыдущий 

совет 

См. 

Таблица 2 
- 

oh

ih


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Рисунок 1 - Визуальное представление переменных состояния. 

 

Пространство деи ствии  включает советы, которые система предотвращения 

столкновении  может предоставить во время полета, всего 7 возможных советов, 

как показано в Таблице 2. Все советы, кроме COC, вызывают предупреждение и 

направляют самолет в определенныи  диапазон вертикальных скоростеи  с 

соответствующим ускорением. Совет COC указывает на отсутствие немедленнои  

угрозы столкновения с вторгающимся самолетом. 

Таблица 2 

Набор советов 

 

Действие Описание Ускорение 

COC Нет конфликта 0 

DES1500 Спуск<=-25ft/s -g/3 

CL1500 Взлет>=25ft/s g/3 

SDES1500 Спуск<=-25ft/s -g/2.5 

SCL1500 Взлет>=25ft/s g/2.5 

SDES2500 Спуск<=-42ft/s -g/2.5 

SCL2500 Взлет>=42ft/s g/2.5 

 

Таблица 3 описывает доступность каждого совета в зависимости от текущего 

отображаемого совета. Например, COC может быть выдан в любое время. Однако 

DES1500 и CL1500, будучи начальными советами, могут быть выданы только если 

в данныи  момент пилоту отображается COC. SDES1500 может быть выдан после 
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CL1500, SCL1500 и SCL2500, выступая как разворот, или после SDES2500, выступая 

как ослабление. Важно отметить, что SDES1500 не может следовать за COC и также 

не может следовать за DES1500 из-за их сходства по своеи  природе. Таким образом, 

исходя из доступности каждого совета под текущим советом, агент на самом деле 

может выбирать только из трех деи ствии  в каждом состоянии. 

Таблица 3 

Доступность советов 

Действие Доступно от 

COC В любое время 

DES1500 COC 

CL1500 COC 

SDES1500 CL1500, SCL1500, SCL2500, SDE2500 

SCL1500 
DES1500, SDE1500, SDES2500, 

SCL1500 

SDES2500 DES1500, SDES1500 

SCL2500 CL1500, SCL1500 

 

2) Динамическая модель самолета  

Динамическая модель может быть записана как уравнение (4). Мы 

предполагаем временнои  шаг в одну секунду, что означает обновление системы 

предотвращения столкновении  с частотои  1 Гц. Для усложнения симуляционнои  

среды мы ограничиваем диапазон ускорении  вторгающегося самолета 

значениями от [-aint, aint], и предполагаем, что скорость вторгающегося самолета 

hint изменяется в направлении состояния столкновения на каждом шаге. 

int int

int int int

'

0.5 0.5

1

own own

own own own

prev
prev

h h h h h h

h h h

h h h

a a

 

        
     
  

  
   
  
    

                                         (4) 
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3) Формирование награды  

В задачах предотвращения столкновении  функция награды должна 

балансировать между безопасностью и эффективностью. Поэтому наша цель – 

предотвратить столкновения, минимизируя при этом выдачу отвлекающих 

предупреждении  и неожиданных деи ствии  системы (таких как усиление 

рекомендации , изменение рекомендации  или создание пересечения высот между 

самолетами). Кроме того, чтобы минимизировать влияние на другое воздушное 

пространство во время разрешения конфликта, мы поощряем весь процесс 

разрешения оставаться в определенном диапазоне высот. Таким образом, дизаи н 

функции награды в первую очередь разделен на две части.  

Во-первых, в конце TTC нам необходимо, чтобы относительная высота 

самолетов поддерживалась на определеннои  высоте hrel, и штрафы налагаются за 

другие состояния, такие как столкновение, чрезмерно высокая или низкая 

относительная высота. Первая часть функции награды может быть 

сформулирована следующим образом: 

   

   

1 _

_

_ _

1

       max 2 , 25

rel col

NMAC rel col NMAC col rel rel s

rel s col

leav rel rel s rel rel s

h h
R h h h h h

h h

h h h h

 



 
        

    

           (5) 

Где wNMAC штрафует за столкновение между собственным самолетом и 

нарушителем, hrel представляет относительную высоту между двумя самолетами, 

hcol  указывает высоту, на которои  происходит конфликт между двумя самолетами, 

hrel_s обозначает желаемую относительную высоту, которую мы хотим, чтобы два 

самолета достигли, а wleav представляет штраф, накладываемыи , когда 

относительная высота между двумя самолетами чрезмерно велика. 

В течение периода TTC нам необходимо обращать внимание на высоту 

собственного самолета, изменения в статусе предупреждения и ситуацию 

пересечения высот между двумя самолетами. Функция награды может быть 

сформулирована следующим образом: 

     2 sin1 expleav own upper alert reversal strength cros g COCR h h t tau               (6) 
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wleav представляет штраф, накладываемыи , когда высота собственного 

самолета (hown) превышает заданныи  верхнии  предел диапазона высот (hupper). 

wAlert, wstren, wreversal, wcros штрафуют систему за выдачу предупреждении  и ложных 

тревог. Среди них, τ представляет Время до Столкновения (TTC), и по мере 

приближения времени к TTC, штрафы за предупреждения и другие ложные 

тревоги усиливаются. wCOC предоставляет небольшую награду, когда 

предупреждение снято. 

4) Метрики оценки производительности алгоритма 

Для количественнои  оценки эффективности алгоритма в решении 

проблемы предотвращения столкновении  мы использовали следующие метрики 

оценки: 

 Результаты сходимости средней награды: средняя награда за 

последние 100 эпизодов. 

 Результаты сходимости частоты столкновений: средняя 

частота столкновении  за последние 100 эпизодов. 

 Результаты сходимости коэффициента успеха координации 

высоты (ACSR): средняя доля эпизодов за последние 100 эпизодов, в 

которых относительная высота самолетов была больше 900 футов, но 

меньше 1500 футов. 

 Результаты сходимости среднего количества 

предупреждений: среднее количество предупреждении , выданных за 

эпизод, за последние 100 эпизодов. 

 Результаты сходимости среднего количества усилений 

советов: среднее количество усилении  советов за эпизод за последние 100 

эпизодов. 

 Результаты сходимости среднего количества отмен советов: 

среднее количество отмен советов за эпизод за последние 100 эпизодов. 

 Результаты сходимости среднего количества пересечений 

высот: среднее количество раз, когда высоты обоих самолетов пересекались 

за эпизод, за последние 100 эпизодов. 
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Метод 

В этом разделе мы представляем метод оптимизации алгоритма 

предотвращения воздушных столкновений с использованием ограниченного 

ресурсами обучения с подкреплением. Мы подробно рассматриваем формулировку 

RL с ограничением ресурсов. Наши эксперименты показывают, что информация, 

связанная с ресурсами, имеет ключевое значение для эффективного исследования 

и реализации основных функций системы предотвращения столкновений. Однако 

традиционные алгоритмы RL, как правило, игнорируют информацию о ресурсах и 

предполагают, что среда полностью известна. Чтобы решить эту проблему, мы 

моделируем задачу предотвращения столкновений с использованием RL с 

ограничением ресурсов, включая виртуальные ресурсы, и предлагаем подробное 

объяснение предлагаемого метода Time Resource Bonus (TRB). 

 

1) Ресурсоограниченный MDP 

В обучении с подкреплением (RL) определённые действия требуют ресурсов, 

таких как энергия в робототехнике или потребляемые предметы в видеоиграх. 

Пусть имеется d типов ресурсов. Обозначим вектор ресурсов как d  , а 

множество всех возможных векторов ресурсов — как d

rS  . Пространство 

состояний в проблемах с ограничением ресурсов расширяется до 

  , , ,R o r o r rS s s s s s S s S      , что позволяет алгоритмам изучать информацию, 

связанную с ресурсами. 

Для эффективного использования этой информации мы определяем 

функцию, учитывающую ресурсы, : dI S  , которая отображает состояния в 

ресурсы. Также мы вводим детерминированную функцию перехода ресурсов 

: R rf S A S  , которая считается неизвестной, так как динамика ресурсов часто 

недоступна в реальных задачах. Распределение вероятности перехода задаётся 

следующим образом: 

      , , ,R o o rp s s a p s s a I s f s a                               (7) 
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где  ,o rs s s , а  ,o rs s s   . Мы обозначаем распределение вероятностей 

перехода в задачах с ограниченными ресурсами как p. 

Проблемы с ограничением ресурсов формулируются в виде кортежа 

 , , , , , ,RS A p r I f . Набор доступных действий для состояния s обозначается как A(s),  

и  
Rs S A s A  , причём A(s)  зависит от оставшихся ресурсов.  

Допустимая политика  s   является функцией плотности вероятности над 

A(s), и мы определяем множество допустимых политик как Π. Подобно 

традиционным RL, ресурсоограниченное обучение с подкреплением нацелено на 

решение задачи оптимизации (1) для нахождения оптимальной допустимой 

политики. 

Состояние s2 доступно из s1, если существует стационарная политика    и 

временной шаг t  , такой что  2 1 0tp s s  . Если ресурсы невосполнимы и 

     1 2, i ii d I s I s   , то состояние s2 недоступно из s1. 

Количество доступных ресурсов в состоянии s определяется как 

      1 , , dI s I s I s , где   0iI s  для всех  i d . Ресурсы i-го типа являются 

невосполнимыми, если их количество монотонно убывает, то есть    1i t i tI s I s  . Мы 

предполагаем, что I известно заранее, так как информация о текущих ресурсах 

обычно доступна в реальных задачах. 

 

2) Проблема с ресурсными ограничениями в задаче предотвращения 

столкновений 

При применении обучения с подкреплением для решения проблемы 

предотвращения столкновений в воздухе, несмотря на то что мы штрафовали за 

ненужные предупреждения, такие как эскалация и отмена рекомендаций через 

функцию вознаграждения, мы фактически позволяли этим предупреждениям 

происходить бесконечно. В результате, хотя система могла завершить задачу по 

предотвращению столкновений, пилот подвергался множеству ненужных 

уведомлений. Чтобы решить эту проблему, мы ввели невосстанавливаемый 

виртуальный ресурс, при этом разные типы действий системы потребляют 
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различные объемы ресурсов. Как только ресурсы исчерпаны, система больше не 

будет выдавать рекомендации. В рамках этой настройки агент должен не только 

завершить задачу для достижения высоких вознаграждений, но и 

минимизировать потребление ресурсов. 

На основе условий задачи с ограничением ресурсов мы сначала 

продемонстрировали, что оба алгоритма RL, DQN и SAC, показали низкую 

эффективность использования образцов. Как показано на рисунке 2, оба алгоритма 

сходимости оказались менее успешными при наличии ограничений ресурсов по 

сравнению с ситуацией, когда таких ограничений не было. Мы также сравнили 

производительность обоих алгоритмов при различных уровнях ресурсов. Рисунки 

3 и 4 иллюстрируют, что по мере увеличения доступности ресурсов 

производительность обоих алгоритмов улучшалась как в отношении 

предотвращения столкновений, так и в эффективности планирования. Таблицы 4, 

5 и 6 соответствуют дополнительным показателям выполнения задач в ходе 

экспериментов, представленным на рисунках 2, 3 и 4 соответственно.  

Результаты показывают, что после применения ограничений ресурсов 

количество предупреждений, выданных системой, значительно сократилось, но 

задачи по предотвращению столкновений и планированию были выполнены не на 

должном уровне. Рисунок 5 показывает траектории предотвращения 

столкновений во время обучения при ресурсных ограничениях для обоих 

алгоритмов. Можно увидеть, что оба алгоритма склонны выдавать непрерывные 

предупреждения на ранних стадиях сценария столкновения, тем самым быстро 

исчерпывая ресурсы. Таким образом, хотя эти методы частично решают проблему 

предотвращения столкновений, они не находят оптимальное решение.  

В целом, эти методы страдают от неэффективного исследования в задаче 

предотвращения столкновений с ограничением ресурсов. 
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Рисунок 2 - Производительность обучения DQN и SAC в задачах предотвращения столкновений 
с ограничениями ресурсов и без них. 

 

Рисунок 3 - Производительность обучения DQN в задачах предотвращения столкновений при 
различных ограничениях ресурсов. 

 

Рисунок 4 - Производительность обучения SAC в задачах предотвращения столкновений при 
различных ограничениях ресурсов. 
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Рисунок 5 - Примеры траекторий предотвращения столкновений во время обучения для DQN 
(слева) и SAC (справа) при ограничениях ресурсов. 

 

Таблица 4 

Производительность dqn и sac в задачах предотвращения столкновений 

с ограничениями ресурсов и без них 

 

Алгоритм 
Частота 

столкновений 

Уровень успеха 

координации 

Количество 

оповещений 

Количество 

укреплений 

оповещений 

Количество 

изменений 

оповещений 

Количество 

пересечений 

высоты 

DQN(ресурс=0) 0.021 0.900 6.140 2.011 7.190 0.082 

SAC(ресурс=0) 0.045 0.830 4.578 2.734 7.581 0.111 

DQN(ресурс=15) 0.292 0.380 0.939 0.474 2.406 0.138 

SAC(ресурс=15) 0.262 0.372 0.796 0.427 2.514 0.175 

 

Таблица 5 

Производительность dqn в задачах предотвращения столкновений  

с различными ограничениями ресурсов 
 

Алгоритм 
Частота 

столкновений 

Уровень успеха 

координации 

Количество 

оповещений 

Количество 

укреплений 

оповещений 

Количество 

изменений 

оповещений 

Количество 

пересечений 

высоты 

DQN(ресурс=15) 0.292 0.380 0.939 0.474 2.406 0.138 

DQN(ресурс=20) 0.120 0.573 1.104 0.629 3.421 0.118 

DQN(ресурс=25) 0.056 0.692 1.372 0.608 3.989 0.108 
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Таблица 6 

Производительность обучения sac в задачах предотвращения столкновений с различными 

ограничениями ресурсов 
 

Алгоритм 
Частота 

столкновений 
Уровень успеха 
координации 

Количество 
оповещений 

Количество 
укреплений 
оповещений 

Количество 
изменений 
оповещений 

Количество 
пересечений 

высоты 

SAC (ресурс=15) 0.262 0.372 0.796 0.427 2.514 0.175 

SAC(ресурс=20) 0.175 0.472 0.980 0.622 4.396 0.163 

 SAC(ресурс=25) 0.126 0.551 1.060 0.675 5.023 0.177 

 

3) Time Resource Bonus 

В задачах обучения с подкреплением с ограничениями ресурсов ресурсы 

играют решающую роль в эффективном исследовании. Мы наблюдали, что в 

данном состоянии размер доступного множества состоянии  часто положительно 

коррелирует с оставшимися доступными ресурсами, так как состояния с высокими 

ресурсами не могут быть достигнуты из состоянии  с низкими ресурсами. Ранее 

использованные методы исследования на основе расширения [19] показали, что 

исследование состоянии  с большими доступными наборами состоянии  является 

важным для эффективного исследования. Другими словами, движение к 

состояниям с высокими ресурсами позволяет агенту достигать большого числа 

будущих состоянии , тем самым улучшая его исследование окружающеи  среды. 

Однако при решении проблемы предотвращения столкновении  с ограничениями 

виртуальных ресурсов оба алгоритма, DQN и SAC, не учитывают информацию, 

связанную с ресурсами, и склонны быстро исчерпывать ресурсы. 

Чтобы обеспечить агенту по предотвращению столкновении  поддержание 

высокои  эффективности исследования при снижении количества ненужных 

предупреждении , мы предлагаем Time Resource Bonus (TRB). Этот алгоритм 

побуждает агента экономить ресурсы при выполнении задач по предотвращению 

столкновении  и снижении количества ненужных предупреждении , таким образом 

исследуя состояния с более широким набором приемлемых состоянии .  

Этот метод вводит временнои  коэффициент дисконтирования в процессе 

потребления ресурсов. Мы определяем количество ресурсов, потребляемых 

агентом каждыи  раз, как функцию g, связанную с коэффициентом 
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дисконтирования. Мы требуем, чтобы функция g была возрастающеи  функциеи  

времени. Поэтому в даннои  статье мы определяем функцию g в следующеи  форме: 

    , ,
t

g C s a C s a
T









                                                (8) 

В этои  формуле α — это гиперпараметр, представляющии  чувствительность 

потребления ресурсов к времени. Чем больше значение α, тем ниже 

чувствительность потребления ресурсов к времени. В даннои  статье мы 

произвольно устанавливаем α=T, где T — это максимальное значение интервала 

времени до конфликта (TTC) в процессе предотвращения столкновении . t 

обозначает текущее значение TTC, а C(s,a) представляет собои  количество 

потребляемых ресурсов при выполнении деи ствия a в текущем состоянии s. 

Следовательно, мы определяем функцию, учитывающую ресурсы, как 

      1 ,i i i iI s I s g C s a   . Мы используем внутреннее вознаграждение rint, чтобы 

представить долю оставшегося виртуального ресурса, что влияет на исследование 

агента через форму внутренних вознаграждении . rint принимает следующую 

форму: 

 
max , , , 1 00

int

max

,
t t t

T

s a g P tt
I g s

r s a
I

 
 
 
E

                                       (9) 

 
Эксперименты и результаты 

Наши эксперименты преследуют две основные цели:  

1 проверить, превосходит ли алгоритм TRB алгоритмы DQN и SAC в 

одинаковых условиях ресурсов;  

2 проанализировать сравнительную производительность алгоритма TRB с 

ограничениями виртуальных ресурсов и алгоритмов DQN и SAC без ограничений 

ресурсов. 

1) Настрои ки симуляции 

Параметры алгоритма установлены следующим образом. В соответствии с 

определением пространства состоянии  и деи ствии  алгоритм имеет 5 входов и 3 

выхода. Архитектура неи роннои  сети как для актера, так и для критика состоит из 
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двух скрытых слоев с 64 и 32 узлами, с коэффициентом обучения 6e-5 и порогом 

отсечения градиента 3.0. 

Размер пакета составляет 64, длина горизонта для исследования — 512, 

размер буфера для воспроизведения — 1e6, и сети повторно обновляются с 

использованием буфера воспроизведения, чтобы поддерживать малую потерю 

критика. Что касается формирования вознаграждении , коэффициент 

дисконтирования для будущих вознаграждении  (гамма) установлен на уровне 

0.99, а масштаб вознаграждения равен 1. Процесс обучения прекращается, если 

общее количество шагов превышает 1 миллион. Операционная система — 

Windows 11, а GPU — GeForce RTX 3050. 

2) Экспериментальные результаты и анализ 

Сначала мы сравнили производительность TRB с алгоритмами DQN и SAC в 

одинаковых условиях ресурсов. Мы эмпирически выбрали подходящее количество 

ресурсов (Ресурс = 20), которое отражает производительность алгоритмов. На 

рисунке 6 показано, что после включения внутреннего вознаграждения как 

DQNTRB, так и SACTRB значительно превосходят стандартные алгоритмы DQN и 

SAC. Более того, хотя SAC в настоящее время считается современным алгоритмом 

(state-of-the-art), DQN и DQNTRB достигают лучших результатов сходимости по 

сравнению с SAC и SACTRB в контексте предупреждении  о предотвращении 

столкновении  в воздухе. Конкретные параметры предотвращения столкновении  

представлены в таблице 7.  

Можно наблюдать, что DQNTRB и SACTRB снижают частоту столкновении  и 

повышают уровень успешного согласования высоты по сравнению с DQN и SAC, но 

также влекут за собои  более высокие затраты в отношении предупреждении  (с 

увеличением ненужных предупреждении ). 
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Рисунок 6 - Производительность обучения четырех алгоритмов — DQN, DQNTRB, SAC и SACTRB 
— в задачах предотвращения столкновений с одинаковыми ограничениями ресурсов. 

 

Таблица 7 

Производительность aлгоритмов dqn, dqntrb, sac и sactrb в задачах предотвращения 

столкновений с одинаковыми ограничениями ресурсов 

 

Алгоритм 
Частота 

столкновений 

Уровень 

успеха 

координации 

Количество 

оповещений 

Количество 

укреплений 

оповещений 

Количество 

изменений 

оповещений 

Количество 

пересечений 

высоты 

DQN(ресурс=20) 0.120 0.573 1.104 0.628 3.421 0.118 

SAC(ресурс=20) 0.175 0.472 0.979 0.622 4.396 0.164 

DQNTRB 

(ресурс=20) 
0.056 0.717 1.856 0.729 3.436 0.123 

SACTRB 

(ресурс=20) 
0.078 0.657 1.565 0.889 5.352 0.114 

 

Далее мы сравнили производительность обучения DQNTRB и SACTRB при 

различных ограничениях ресурсов с производительностью предотвращения 

столкновении  DQN и SAC без ограничении  ресурсов.  

На рисунке 7 показана производительность обучения DQNTRB при 

различных ограничениях ресурсов, а также производительность обучения 

неограниченного алгоритма DQN в среде предупреждении  о предотвращении 

столкновении .  
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Рисунок 7 - Производительность обучения DQNTRB в задачах предотвращения столкновений 

при различных ограничениях ресурсов, вместе с производительностью DQN в задачах 

предотвращения столкновений без ограничений ресурсов. 

Явно видно, что без ограничении  ресурсов алгоритм DQN сходится быстрее 

всего и достигает лучших результатов. DQNTRB более чувствителен к изменениям 

уровня ресурсов. Конкретные параметры предотвращения столкновении  в 

таблице 8 также отражают тот же результат, где алгоритм DQN демонстрирует 

оптимальную эффективность предотвращения столкновении  и уровень 

успешного согласования высоты. Однако в отношении частоты предупреждении  

DQNTRB значительно уступает DQN. 

Таблица 8 

Производительность dqntrb в задачах предотвращения столкновений с различными 

ограничениями ресурсов и dqn в задачах предотвращения столкновений 

без ограничений ресурсов 

 

Алгоритм 
Частота 

столкновений 

Уровень успеха 

координации 

Количество 

оповещений 

Количество 

укреплений 

оповещений 

Количество 

изменений 

оповещений 

Количество 

пересечений 

высоты 

DQN(ресурс=0) 0.021 0.900 6.140 2.011 7.190 0.082 

DQNTRB 

(ресурс=15) 
0.082 0.662 1.146 0.682 4.307 0.134 

DQNTRB 

(ресурс=20) 
0.056 0.717 1.856 0.729 3.436 0.123 

DQNTRB 

(ресурс=25) 
0.041 0.799 2.247 0.889 4.332 0.102 
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На рисунке 8 показана производительность обучения SACTRB при 

различных ограничениях ресурсов и производительность алгоритма SAC без 

ограничении  ресурсов в среде предотвращения столкновении . Аналогично 

рисунку 7, алгоритм SAC демонстрирует хорошие результаты сходимости; однако 

скорости сходимости различных алгоритмов схожи, и кривые обучения указывают 

на то, что SACTRB менее чувствителен к изменениям уровня ресурсов.  

 

Рисунок 8 - Производительность обучения SACTRB в задачах предотвращения столкновений 

при различных ограничениях ресурсов, вместе с производительностью SAC в задачах 

предотвращения столкновений без ограничений ресурсов. 

 

Конкретные параметры предотвращения столкновении  в таблице 9 

показывают, что при ограничениях ресурсов, в отличие от DQNTRB, алгоритм 

достигает наилучшеи  частоты предотвращения столкновении  и уровня 

успешного согласования высоты при количестве ресурсов 20, при этом 

поддерживая аналогичную эффективность предотвращения столкновении  и 

значительно более низкую частоту предупреждении  по сравнению с SAC. 
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Таблица 9 

Производительность sactrb в задачах предотвращения столкновений с различными 

ограничениями ресурсов и sac в задачах предотвращения столкновений  

без ограничений ресурсов 

 

Алгоритм 
Частота 

столкновений 
Уровень успеха 
координации 

Количество 
оповещений 

Количество 
укреплений 
оповещений 

Количество 
изменений 
оповещени

й 

Количество 
пересечений 

высоты 

SAC(ресурс=0) 0.045 0.831 4.578 2.734 7.581 0.111 

SACTRB 

(ресурс=15) 
0.111 0.603 0.968 0.766 4.248 0.128 

SACTRB 

(ресурс=20) 
0.078 0.657 1.565 0.889 5.352 0.114 

SACTRB 

(ресурс=25) 
0.098 0.649 1.621 1.063 6.929 0.181 

 

Заключение 

В данной статье демонстрируется эффективность включения ограничений 

ресурсов в алгоритмы обучения с подкреплением для предотвращения 

столкновений в воздухе. Формулируя задачу как задачу МДП с ограничениями 

ресурсов и вводя механизм бонуса за время ресурсов (TRB), мы успешно 

оптимизировали как алгоритм DQN, так и SAC, в результате чего были получены 

DQNTRB и SACTRB.  

Эти модифицированные алгоритмы достигли значительного сокращения 

ненужных предупреждений без ущерба для производительности предотвращения 

столкновений. Результаты подчеркивают потенциал обучения с подкреплением с 

учетом ресурсов для повышения эффективности и надежности систем 

предотвращения столкновений в условиях все более сложной воздушной среды. 
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