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Аннотация. Данная работа посвящена алгебраической оценке 

помехоустойчивости алгебраического каскадного сверточного кода. 

Актуальность исследования обусловлена широким применением 

помехоустойчивого кодирования в современных системах беспроводной связи, а 

также преимуществами каскадных конструкций, сочетающих высокую 

корректирующую способность и приемлемую сложность реализации. 

Целью работы является теоретическая оценка помехоустойчивости и 

моделирование алгебраического сверточного кода и каскадного кода с 

недвоичными алгебраическими сверточными кодами на внешней и внутренней 

ступенях, построенных на основе кодов Рида-Соломона над расширенными 

полями Галуа. Приведена оценка вероятности ошибки в канале с АБГШ при 

использовании модуляции BPSK и 16-PSK.  

Предложенный подход позволяет алгебраическим способом задавать коды с 

высокими корректирующими способностями и оценивать их теоретически 

достижимую помехоустойчивость. 

Из-за больших длин кодовых слов классический биномиальный подход к 

расчету вероятности ошибки заменен на более точный интегральный метод с 
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использованием неполной бета-функции. Моделирование учитывало влияние 

перемежения между ступенями кодирования. Результаты показали, что 

использование реального перемежителя с конечной глубиной (на примере 

глубины 1000 бит) приводит к ухудшению помехоустойчивости по сравнению с 

идеальным случаем из-за группировки ошибок. 

Таким образом, показана возможность применения алгебраических методов 

теории блоковых кодов для оценки помехоустойчивости каскадных сверточных 

конструкций. Моделирование подтвердило корректность предложенной 

методики и выявило зависимость эффективности кода от параметров 

перемежителя.  

В результате исследований было выявлено, что алгебраический декодер не 

учитывает кадровую избыточность алгебраического сверточного кода и его 

свойства. Следовательно, для устранения данного недостатка алгебраического 

декодера и учета свойств алгебраического сверточного кода необходимо 

синтезировать алгебраический метод декодирования с методом максимального 

правдоподобия. 

Ключевые слова: сверточные коды, декодирование сверточных кодов, каскадные 

сверточные коды, алгебраические сверточные коды, расчет помехоустойчивости. 
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Abstract. This paper is dedicated to the design of a cascaded code based on non-binary 

algebraic convolutional codes. The relevance of the research is driven by the widespread 

use of error-correcting coding in modern wireless communication systems, the benefits 
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of using a cascaded coding scheme, and the properties of non-binary algebraic 

convolutional codes. 

The goal of this work is the theoretical estimation and simulation of the noise 

immunity of an algebraic convolutional code and a cascaded code with non-binary 

algebraic convolutional codes at the outer and inner stages, constructed based on Reed-

Solomon codes over extended Galois fields. An estimation of the error probability in an 

AWGN channel using BPSK and 16-PSK modulation is provided. 

The proposed approach makes it possible to design codes based on algebraic 

methods with high error-correction capabilities and estimate their theoretically 

achievable noise immunity. Due to the large codeword lengths, the classical binomial 

approach to calculating the error probability was replaced by a more accurate integral 

method using the incomplete beta function. The simulation accounted for the influence 

of interleaving between the coding stages. The results showed that using a real 

interleaver with finite depth (exemplified by a depth of 1000 bits) leads to a degradation 

in noise immunity compared to the ideal case due to burst error propagation.  

Thus, the possibility of applying algebraic methods from block code theory to 

estimate the noise immunity of cascaded convolutional structures is demonstrated. The 

simulation confirmed the correctness of the proposed methodology and revealed the 

dependence of the code's efficiency on the interleaver parameters.  

The research revealed that the algebraic decoder does not account for the frame 

redundancy and specific properties of the algebraic convolutional code. Consequently, to 

eliminate this shortcoming of the algebraic decoder and to incorporate the code's 

properties, it is necessary to synthesize a decoding method that combines the algebraic 

approach with the maximum likelihood method. 

Keywords: convolutional codes, decoding of convolutional codes, cascaded 

convolutional codes, algebraic convolutional codes, noise immunity calculation. 
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Введение 

Помехоустойчивое кодирование применяется повсеместно в различных 

стандартах беспроводной передачи данных, например, в стандартах спутниковой 

связи и мобильного интернета, обеспечиваемого группировкой 

низкоорбитальных спутников [1-3]. Так, системы спутниковой связи Starlink и 

OneWeb используют в качестве кода турбо-коды [4], для телевещания по 

стандарту DVB-2S выбраны коды LDPC и длинные коды БЧХ [5], при передаче 

данных со спутников дистанционного зондирования Земли применяются коды 

Рида-Соломона (255,239) либо каскадный код в виде cверточного код со 

скоростью 3/4 в составе решетчатого кодирования и того же кода Рида-Соломона 

[6]. 

Известно, что наилучшие коды, согласно теореме Шеннона, должны иметь 

длину, стремящуюся к бесконечности, однако при этом возрастает сложность 

кодирующего и прежде всего декодирующего устройства. Один из вариантов 

решения такой проблемы – это каскадные кодовые конструкции [7-9]. 

Известны различные варианты каскадных кодов, например, сочетания 

только блоковых кодов, коды-произведения, коды, состоящие из сверточного и 

блокового (например, широко распространённый вариант описан в [10]). В 

частности, сверточные коды в составе таких каскадных кодов обеспечивают 

коррекцию одиночных ошибок более эффективно, чем блоковые, при этом их 

кодирующее устройство значительно проще [11-13]. 

В то же время известно, что поиск сверточных кодов с большими длинами 

кодового ограничения реализуется переборным методом и усложнен отсутствием 

алгебраического подхода к оценке помехоустойчивости кодов алгебраическим 

способом [14]. Целью работы является алгебраическая оценка 

помехоустойчивости алгебраических каскадных сверточных кодов. 

 

Расчёт помехоустойчивости  

алгебраического каскадного сверточного кода 

В работах [15, 16] предложен алгебраический способ построения сверточных 

кодов на основе формирования набора порождающих многочленов путем 
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разложения порождающего многочлена недвоичного блокового (N, K) – кода 

Рида-Соломона над GF(qm). Предложено обобщение работы кодера недвоичного 

блокового (N, K) – кода Рида-Соломона над GF(qm) на случай полубесконечной 

длины информационного и кодового слов с предварительным усечением 

информационного слова на подполе GF(qp) для любых p < m.  

В теории сверточного кодирования оценка помехоустойчивости зачастую 

связана с классическими методами их декодирования: пороговый, максимум 

правдоподобия и последовательный. Каждый метод декодирования обладает 

определенной спецификой, из которой следует оценка корректирующей 

способности и энергетический выигрыш кодирования [11]. Выполним расчет 

помехоустойчивости алгебраического сверточного кода на основе 

математического аппарата алгебраической теории блокового кодирования [17-

19].  

В качестве модели канала будет рассматриваться канал с АБГШ и считается, 

что в приемнике выполняется дискретный (посимвольный) приём по выходу 

канала. В случае, когда отсчёты шума независимы, вероятность блоковой ошибки 

помехоустойчивых кодов традиционно определяется через сумму биномиальных 

распределений вероятности возникновения t + 1 и более ошибок на длине 

кодового слова n.  

При этом при больших значениях n возникают следующие проблемы: 

1. Сложность вычисления биномиальных коэффициентов. 

Существует проблема в вычислении биномиальных коэффициентов, когда 

параметры кратности исправляемых ошибок и длины блока велики. Чтобы 

упростить сложность вычислений, возникает идея заменить биномиальное 

представление интегральным. Существует два способы перехода к интегральному 

представлению: через неполные гамма-функции и через относительные 

неполные бета-функции [20]. Первый способ применяется в случае, если 

биномиальное распределение можно представить в виде распределения Пуассона. 

Второй способ является универсальным и более точным.  
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2. Оценка длины вектора (расстояния между точками). 

Модуль вектора, соответствующего принятому сигналу, равен корню из 

энергии сигнала E  либо корню из полной суммарной мощности n символов nP

. Оба этих определения являются равноправными, но в зависимости от выбора 

используется соответствующий метод расчёта длины вектора либо расстояния 

между векторами. 

В зависимости от выбранного способа результаты могут отличаться. Первый 

вариант является наиболее распространённым и менее точным, поскольку при его 

применении не берётся в расчёт используемая полоса частот, что упрощает 

вычисления. Однако, например, при доказательстве теоремы Шеннона 

используется вариант выражения длины через мощность, и в дальнейших 

расчётах будет использован именно этот подход. 

Рассмотрим каскадную кодовую конструкцию, которая состоит из 

последовательно соединенных нескольких алгебраических сверточных кодов. 

Такая конструкция обладает ступенями кодирования: внешней и внутренней. На 

внешней ступени кода применим недвоичный алгебраический сверточный (n1, k1) 

– код над полем GF(qm), допускающий недвоичную обработку символов, а на 

внутренней алгебраический сверточный (n0, k0) – код над полем GF(2m), что 

соответствует двоичной обработке символов. Отметим, что внутренняя ступень 

кодера, декодера и канала образуют суперканал рассматриваемой системы 

передачи дискретных сообщений. Таким образом формируется алгебраический 

каскадный сверточный (n(k), k(k)) – код [15]. 

 

Выберем в качестве кода (n0, k0) – код над полем GF(24) и фазовую модуляцию 

BPSK для упрощения расчетов при переходе от символов модуляции к кадрам n(0) 

кодового слова сверточного (n0, k0) – кода. При этом отметим, что расчеты можно 

обобщить на вариант с произвольной модуляцией. При модуляции обычно 

применяется расстановка символов по коду Грея, поэтому расстояние Хемминга 

между символами в канале равно 1, следовательно, вероятность битовой ошибки 
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_ modbitq  равна вероятности символьной ошибки приема символа модуляции, 

деленной на число бит в символе модуляции: 

 _ mod _ mod mod/bit sq q m  (1) 

где modm  – число бит в одном символе модуляции, mod 2 modlog ( )m M , mod 16M   

– порядок модуляции. Далее требуется преобразовать блоки принятых двоичных 

символов в кадры n(0) кодового слова сверточного (n0, k0) – кода размером 4m   

двоичных символов. Следовательно, вероятность правильного приема одного 

кадра k(0) кодового слова сверточного (n0, k0) – кода 
sq  равна вероятности 

правильного приема всех составляющих его бит. Пусть для формирования одного 

кадра n(0) кодового слова сверточного (n0, k0) – кода на вход кодера поступает 

целое число модулированных символов, т.е. 
mod

m
a

m
  – целое число. В таком случае 

вероятность появления ошибочного кадра n(0) кодового слова сверточного (n0, k0) 

– кода на входе декодера может быть найдена как 

  _ mod1 1
a

s sq q    (2) 

В случае, если a  не целое, может быть сделано следующее грубое 

округление: 

  _ mod1 1
a

s sq q
  

    (3) 

где     означает округление до целого вверх. 

Для выбранного примера вероятность ошибочного приема кадра n(0) 

кодового слова сверточного (n0, k0) – кода sq  равна c учетом выражения (1) 

следующему: 

  
1

_ mod mod _ mod1 1s s bitq q m q      (4) 

В свою очередь, вероятность ошибки декодирования ошQ  на длине секции N 

одного кадра n(0) кодового слова сверточного (n0, k0) – кода после декодирования 

по стандартному биномиальному соотношению равна [17-19]: 

 

  
1

1
N

N ii i

ош N s s

i t

Q C q q


 

   (5) 
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Переход от вероятности ошибки декодирования ошQ  на длине секции N к 

вероятности ошибки на бит будет зависеть от стратегии сверточного декодера 

внутренней ступени. В случае неуспешной попытки декодирования и, 

следовательно, размножения декодером ошибок c учетом равномерного 

распределения не более чем D0 ошибок на длине секции N и того, что даже при 

неверном декодировании одного символа вероятность верного приема одного 

выбранного бита в его составе равна 0,5, вычисление вероятности _bit внуq  может 

быть выполнено по следующей формуле: 

 

 01

2
bit ош

D
q Q

N
  (6) 

Если же выполняется отказ от декодирования, то по-прежнему, учитывая их 

распределение, а также то, что ошибка одного кадра n(0)  кодового слова 

сверточного (n0, k0) – кода вызывается ошибкой модуляции и, следовательно, 

содержит не более чем 1 ошибочный бит из m при согласовании размера символа 

модуляции и кадра, получим выражение: 

 

 
1 1

bit ошq Q
m N

  (7) 

Наконец, для случая, когда происходит отказ от декодирования, но число 

ошибочных бит в одном кадре n(0) кодового слова сверточного (n0, k0) – кода может 

быть произвольным, можно использовать оценку [21]: 

 
12 1

2 1

m

bit ошm
q Q

N






 (8) 

Выражения (6) – (8) могут быть использованы как оценка 

помехоустойчивости для секции длины N кадров n(0) кодового слова сверточного 

(n0, k0) – кода, при этом выражение (6) далее не будет использовано, т.к. будет 

рассмотрен только прием с возможностью отказа от декодирования. 

Для верификации было проведено моделирование. При моделировании 

были рассмотрены возможности реализации алгебраического декодирования при 

ограничении работы алгебраического сверточного декодера на случай длины 

кодовых слов N. При этом работа декодера рассматривается при разных значениях 
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количества K кадров информационного слова алгебраического сверточного (n0, k0) 

– кода.  

На рисунках 1 и 2 показаны результаты моделирования и графики 

выражений (7) и (8) в зависимости от 0/bE N  для различных значений k(0) и p. На 

рисунке 3 приведен совместный график вероятности битовой ошибки.  

 

 
Рисунок 1 – Зависимость вероятности ошибки от 0/bE N   

для кода (15,5) при различных значениях параметра p. 
 
 

 
 

Рисунок 2 – Зависимость вероятности ошибки от 0/bE N   

для кода (15,9) при различных значениях параметра p. 
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Рисунок 3 – Зависимость вероятности ошибки от 0/bE N   

для кодов с разным значением k(0) при p = 3. 
 
 

По условию приведения недвоичных циклических блоковых (N, K) – кодов 

Рида-Соломона над полем (qm) к алгебраическим сверточным (n0, k0) – кодам с 

двоичной и недвоичной обработкой символов в декодере наблюдается 

возможность варьировать длиной кадра k(0) при построении сверточного кода на 

случай 1 ≤ p < m. 

Из графиков видно, что предложенные методы оценки (7), (8) ограничивают 

сверху и снизу результаты моделирования. Анализ результатов оценки 

помехоустойчивости алгебраических сверточных кодов, представленных на 

рисунках 1 – 3, позволяет сделать вывод о том, что с ростом избыточности 

алгебраического сверточного (n0, k0) – кода удается повысить корректирующую 

его способность на длине секции N кадров n(0) кодового слова сверточного (n0, k0) 

– кода. При этом рекомендуется длину входных информационных кадров 

алгебраического сверточного (n0, k0) – кода выбирать близкую, но не равную 

степени m расширения примитивного поля, удовлетворяющую k(0) = logq |M|, где M 

– множество элементов подполя информационных кадров. При выборе значений 

m, стремящихся к единице, наблюдается снижение энергетической 
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эффективности кодирования. Это связано с тем, что алгебраический декодер не 

учитывает кадровую избыточность алгебраического сверточного (n0, k0) – кода и 

его свойства.  

Оценим помехоустойчивость алгебраического каскадного сверточного (n(k), 

k(k)) – кода. 

Предположим, что заданы следующие конечные поля: GF(23), GF(24) и 

GF((23)3). Пусть задан недвоичный блоковый код РС над GF((23)3) который 

исправляет 105 ошибок и имеет следующие параметры: N1 = 29 – 1 = 511, K1 = 511 – 

2 · 105 = 301, D1 = 2 · 105 + 1 = 211 и степень порождающего многочлена deg u(x) = 

14. Тогда блоковый (511, 301, 211) – код РС над GF((23)3) полностью определяет 

алгебраический сверточный (n1, k1) – код над GF((23)3) в несистематическом виде 

на внешней ступени. При этом (n1, k1) – код имеет порождающий многочлен g(x) 

степени deg g(x) = 14 и следующие параметры: k(1) = 2, n(1) = 3, k1 = 30, n1 = 45, v1 = 28, 

R1 = 2/3, d1 ≥ 15. 

Далее пусть задан код РС над полем GF(16), исправляющий 3 ошибки, который 

имеет следующие параметры: N0 = 24 – 1 = 15, K0 = 9, D0 = 2 · 3 + 1 = 7, и степень 

порождающего многочлена deg w(x) = 12. Следовательно, (15, 9, 7) – код РС над 

GF(24) определяет алгебраический сверточный (n0, k0) – код над GF(24) на 

внутренней ступени каскадного (n(k), k(k)) – кода. Тогда сверточный (n0, k0) – код 

будет иметь параметры: k(0) = 3, n(0) = 4, k0 = 39, n0 = 52, v0 = 36, R0 = 3/4, d0 ≥ 13 и 

порождающий многочлен g*(x) степени deg g*(x) = 12. 

При этом длина секции информационного слова (n(k), k(k)) – кода kk  = 1491, а 

длина секции кодового слова kn  = 7665 [13]. 

Оценку можно выполнить, считая, что выражения (1)-(8) справедливы для 

канала с модуляций 16-PSK и (n0, k0) – кода на внутренней ступени c 

соответствующими параметрами, в частности t0, D0 и N0. 

Вычислим вероятность правильного приема одного кадра n(1) кодового слова 

сверточного (n1, k1) – кода на внешней ступени аналогично (2): 

  _ _1 1
внеm

ош вну s внеQ q    (9) 
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В итоге вероятность кадра кадрам n(1) кодового слова сверточного (n1, k1) – 

кода на внешней ступени определяется как: 

  
1

_ _1 1 внеm
s вне ош внуq Q    (10) 

Выполним оценку помехоустойчивости (n1, k1) – кода на внешней ступени. Из-

за больших значений биномиальных коэффициентов не может использоваться 

формула, аналогичная (5), поэтому наиболее удобным является переход к 

интегральному представлению [18]: 

      
1

1 11
11 1

_ 1 1 1 1 1

1 0

1, 1

qt
N tt

ош вне q

j

N t j
Q J t N t y y dy N t

j

 



 
          (11) 

где значение q  берется из (10), а затем аналогично (9) получим  

 _ _

1

1 1
bit bit вне ош вне

вне

q q Q
N m

   (12) 

Таким образом, выражение (12) является конечным выражением для оценки 

помехоустойчивости каскадной конструкции. 

 

Согласно формуле (12), было проведено моделирование системы связи на 

основе предложенного алгебраического каскадного сверточного (n(k), k(k)) – кода и 

модуляции 16-PSK. Для обеспечения равновероятного появления ошибки в потоке 

бит между первым и вторым декодером, а, соответственно, между первым и 

вторым кодером применяется перемежение бит. Использованы два варианта – 

полностью идеальный случай перемежения, когда канал, модулятор и 

демодулятор, кодер и декодер внутреннего кода образуют суперканал, на выходе 

которого появляются независимые ошибки с определенной вероятностью, и 

реальный случай, когда символы на входе декодера подвергаются реальному 

перемежению на заданную глубину (использована глубина 1000 бит).  

Результаты моделирования представлены на рисунке 4. 

На рисунке 5 показаны результаты моделирования кодовои  конструкции для 

различных длин секции K кадров алгебраического сверточного (n1, k1) – кода на 

внешнеи  ступени.  
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Рисунок 4 – Зависимость вероятности ошибки от 0/bE N   

для предложенной кодовой конструкции. 

 

 

Рисунок 5 – Зависимость вероятности ошибки от 0/bE N   

для различных длин секции K. 
 

Из рисунка 5 видно, что при изменении K на 30% разница в значении 0/bE N

для достижения той же помехоустойчивости не более 1 дБ. Это связано с 

поведением графика вероятности битовой ошибки внутренней ступени. 
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На рисунке 6 показана, полученная в результате моделирования, 

зависимость помехоустойчивости от глубины перемежителя.  

 

 

Рисунок 6 – Зависимость вероятности ошибки от 0/bE N   

для предложенной кодовой конструкции при разных вариантах перемежителя. 
 

Из рисунка 6 видно, что проигрыш реального перемежителя относительного 

идеального варианта может достигать 0,2 дБ. Это может быть объяснено тем, что 

при небольшой глубине перемежения кодовые слова (n1, k1) – кода на внешней 

ступени, содержащие ошибки, группируются и с большей вероятностью приводят 

к появлению более чем t1 ошибок на длине одного кодового слова внешнего кода.  

 

Выводы 

В работе проведена алгебраическая оценка помехоустойчивости 

алгебраического каскадного сверточного (n(k), k(k)) – кода для случая секций длины 

K < N. Такое ограничение длин секций K позволяет применять алгебраическое 

декодирование каскадного сверточного (n(k), k(k)) – кода и применять 

математический аппарат теории недвоичных блоковых кодов для оценки 

помехоустойчивости алгебраических каскадных сверточных (n(k), k(k)) – кодов. 

Проведены исследования влияния скорости кода алгебраических сверточных 

(n, k) – кодов на внешней и внутренней ступени кода, которые показали, что с 

ростом скорости кода значения энергетической эффективности кодирования 
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возрастают. Следовательно, рекомендуется длину входных информационных 

кадров алгебраического сверточного (n, k) – кода выбирать стремящуюся к 

значению m расширения примитивного поля, удовлетворяющую k = logq |M|. 

Построенные графики расчетных значений помехоустойчивости и 

результатов моделирования, которые подтвердили корректность 

представленной методики расчета помехоустойчивости предложенных кодов, а 

также выявили зависимость результатов моделирования от параметров 

перемежителя между внешней и внутренней ступенями кода.  

В результате исследований было выявлено, что алгебраический декодер не 

учитывает кадровую избыточность алгебраического сверточного (n, k) – кода и 

его свойства. Следовательно, для устранения данного недостатка 

алгебраического декодера и учета свойств алгебраического сверточного (n, k) – 

кода необходимо синтезировать алгебраический метод декодирования с методом 

максимального правдоподобия.  
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