Валидация решения задачи движения твердого тела в набегающем потоке с использованием программного продукта ЛОГОС

Танненберг И.Д.*, Рамазанов Р.Ф.**

Филиал ПАО «Компания «Сухой» «ОКБ Сухого», ул. Поликарпова, д.23А, Москва, 125284, Россия, ^{*}e-mail: ilya.berg@gmail.com ^{**}e-mail: ramazanovrf@inbox.ru

Аннотация

В настоящей работе приводятся результаты моделирования движения прямоугольных жестких пластин в набегающем потоке с помощью методов вычислительной гидродинамики на перекрывающихся сетках [1], реализованных в программном продукте ЛОГОС, разработки ФГУП «РФЯЦ-ВНИИЭФ». Моделирование проводится с целью валидации возможностей ПП ЛОГОС путем сравнения расчетных траекторий движения пластин и известных результатов расчетного и экспериментального исследования. В трех исследованиях из четырех получено удовлетворительное совпадение результатов, для неудовлетворительного случая дан анализ причин отклонения. **Ключевые слова**: вычислительная гидродинамика, расчет движения тел, валидация, суперкомпьютерные вычисления, обледенение, ЛОГОС, перекрывающиеся сетки.

Введение

Настоящая работа проводилась с целью валидации пакета ЛОГОС при моделировании движения твердых тел под воздействием набегающего потока. Валидацией численных методов является демонстрация требуемого уровня точности результатов расчета по сравнению с известным достоверным решением [2 - 4].

При проектировании летательных аппаратов, необходимо определять характер движения отделяемых элементов от основной конструкции в случаях:

- Обеспечение безопасности отделения грузов от носителя, а также определение особенностей траектории движения грузов после отделения;
- Определение траектории движения ледяных осколков, возникающих от намерзания на поверхности планера ледяной кромки.

В настоящей работе анализируются результаты экспериментального исследования движения прямоугольных пластин в набегающем потоке [5]. Указанное исследование проводилось с целью определения траектории движения осколков льда, которые нарастают на поверхности аэродинамических профилей, в случае отказа или отсутствия противообледенительной системы [6 - 8]. Проведение подобных исследований в случае реального летательного аппарата регламентируется требованиями [9, 10], для сертификации о защищенности от случаев попадания осколков льда в важные элементы конструкции самолета: воздухозаборник, органы управления, крыло. В работе [5] сравнивались результаты экспериментального исследования и расчетной методики Монте-Карло. Эта методика предполагает, что движущееся тело не вносит возмущения в аэродинамический поток [11-12]. Следовательно, можно определить его траекторию движения, если рассчитать распределение газодинамических величин в потоке а также определить его аэродинамические характеристики.

В ходе эксперимента [5] было установлено, что положение пластин сразу после схода с державок может незначительно отличаться от начальных углов установки из-за неравномерности раскрытия державок. Поэтому в решение по методике Монте-Карло была встроена выборка начальных положений пластины в диапазоне ~2° по углам тангажа, крена и рысканья. Перебором начальных положений пластины достигалась точность расчета траектории.

Представленные в [5] расчетные и экспериментальные данные позволяют использовать их для валидации решателя ЛОГОС. Также возможно сделать вывод о преимуществах и недостатках каждого расчетного метода.

Постановка задачи

Ставится задача моделирования свободного движения в потоке квадратных и прямоугольных пластин (см. рис.1). Информация о начальных параметрах пластин занесена в таблицу 1. Цель моделирования настоящей работы - определить траекторию движения центра масс пластины.

Результаты расчётов сравниваются с траекториями центра масс, которые получены как экспериментально в аэродинамической трубе, так и с помощью расчета по методике Монте-Карло [5]. Результат моделирования считается достаточно точным, если полученная траектория отличается от экспериментальной не более чем на 5 %. Такой подход обычно используется в инженерной практике для расчетов траектории отделения грузов.

Рисунок 1 - Общий вид исследуемых тел [5]

Квадратная пластина 152,4 мм Прямоугольная пластина Название × 152,4 × 0,48 мм 304,8 × 152,4 × 0,48 мм Вид стенда $\theta = 0^{\circ}$ Угол атаки $\theta = 0^{\circ}$ $\theta = 90^{\circ}$ $\theta = 0^{\circ}$ Угол рыска- $\psi = 0^{\circ}$ $\Psi = 0^{\circ}$ $\Psi = 0^{\circ}$ $\psi = 90^{\circ}$ нья 0,21772 Вес, кг 0,43091 $2,65 \times 10^{-4}$ $4,21 \times 10^{-4}$ 0 0 0 0 Инерционная $6,64 \times 10^{-4}$ $4,21 \times 10^{-4}$ 0 0 0 0 матрица $8,38 \times 10^{-4}$ 0 $3,31 \times 10^{-4}$ 0 0 0

Таблица 1 - Геометрические и физические особенности исследуемых моделей

Также присутствует геометрические модели державок с зазором 152,4 мм и с

зазором в 304,8 мм (рис. 2).

Рисунок 2 - Геометрические модели державок для деталей с шириной 152,4 мм

(слева) и 304,8 мм (справа)

Параметры набегающего потока представлены в таблице 2.

Таблица 2 - Параметры потока

Скорость V∞, м/с	Статическая температура T_{∞} , °С	Статическое давление P_{∞} , Па
71,5	29,7	97216

Описание решения задачи

Для решения каждой задачи построены расчетные области, типовой вариант которых показан на рис. 3.

Рисунок 3 - Расчетная область:

1 - Вид слева на расчетную область; 2 - Вид спереди (против потока); 3 - Изометрическая проекция.

Для каждой расчетной модели строится своя дискретная неструктурированная

гексагональная сеточная модель с призматическим слоем по следующему принципу:

сгущение сеточной модели проводится по траектории движения эксперимента с ли-

нейным постоянным расширением области сгущения так, как показано на рис. 4. Средний размер сеточной модели порядка 7 млн. яч.

Такой подход экономит расчетные ресурсы, и позволяет решить задачу в короткие сроки, при этом сохраняет хорошее качество сетки на всей траектории движения пластины.

Для моделирования движения тела использовались возможности решателя перекрывающихся сеток - наиболее быстрый и устойчивый метод моделирования совместного движения Эйлеровых сеток [1,13].

Рисунок 4 - Сеточная модель, сгущение по траектории эксперимента

По рисункам 5, 6 можно получить представление о других особенностях сеточной модели:

> - Сеточная модель имеет от 3 до 5 ячеек в области интерфейса, что достаточно для нормальной работы решателя перекрывающихся сеток;

- Одинаковый размер ячеек сетки в области интерфейса.

Рисунок 5 - Увеличена сеточная модель в области интерфейса

Рисунок 6 - Сеточная модель на державках

Задача решалась на модели турбулентности SA All Y+, и использовании схемы расщепления конвективных потоков AUSMPW на втором порядке аппроксимации. Расчеты проводились в вычислительном центре коллективного пользования (ВЦКП) ФГУП «РФЯЦ ВНИИЭФ». Каждая задача считалась в среднем 5 часов, с декомпозицией на 240 вычислительных ядер.

Результаты

Расчет движения квадратной пластины

На рисунке 7 приведены распределения поля числа Маха при обтекании свободно движущейся квадратной пластины в разные моменты времени. Пластина изначально находилась в положении $\theta = 0^\circ$; $\psi = 0^\circ$.

Рисунок 7 - Распределение поля числа Маха: слева – начальный момент времени; справа момент времени *t* = 0,1 с.

На рисунке 8 приведено сравнения траектории движения пластины, полученной в результате расчета и эксперимента. Заметно, хорошее совпадение результатов решения.

Рисунок 8 - Сравнение траекторий движения пластин для эксперимента и расчета Для движения квадратной пластины из положения θ = 90°; ψ = 0°, распределение

полей числа Маха показано на рис. 9.

Рисунок 9 - Распределение поля числа Маха: слева – начальный момент времени, справа – момент времени *t* = 0,1 с.

На рисунке 10 приведено сравнения траектории движения пластины, полученной в результате расчета и эксперимента.

Рисунок 10 - Сравнение траекторий движения пластин для эксперимента и расчета

В данном случае регистрируется большое расхождение результатов с экспериментом. Это может быть вызвано:

Во-первых, стоящая вертикально пластина может создавать большие отрывные течения, что может сильно влиять на параметры обтекания пластины. Требуется проверить решение задачи на модели с большей дискретизацией и использованием моделирования трехмерных нестационарных вихрей DES (Detached Eddy Simulation). Во-вторых, возможно на обтекание пластины оказывает большое влияние размер пограничного слоя, который возникает вследствие торможения газа стенками воздушной трубы. Оценить такое влияние можно, только зная геометрические параметры трубы и поставить расчетную модель так, как это было сделано в работе [5] (см. рис. 11).Однако необходимые данные в указанной работе не приведены.

Рисунок 11 - Структура расчетной области, использовавшейся для расчетов в

[5]

Расчет движения прямоугольной пластины

На рисунке 12 приведены распределения поля числа Маха при обтекании свободно движущейся прямоугольной пластины в разные моменты времени. Пластина изначально находилась в положении $\theta = 0^\circ$; $\psi = 0^\circ$.

Рисунок 12 - Распределение поля числа Маха: слева – начальный момент времени; справа момент времени *t* = 0,1 с.

На рисунке 13 приведено сравнения траектории движения пластины, полученной в результате расчета и эксперимента. Заметно хорошее совпадение результатов решения с использованием пакета ЛОГОС и эксперимента, в отличие от вычислительной методики, приведенной в [5].

Рисунок 13 - Сравнение траекторий движения пластин для эксперимента и расчет Для расчета движения прямоугольной пластины из положения θ = 0°; ψ = 0°, рисунок 14 отображает распределение числа Маха.

Рисунок 14 - Распределение поля числа Маха: слева – начальный момент вре-

мени, справа – момент времени t = 0,1 с.

Для этого расчета также достигнуто хорошее совпадение результатов моделирования на ЛОГОС и эксперимента, что отображает рисунок. Расчет по методике Монте-Карло не способен показать достаточную точность определения траектории. В расчеты по этой методике были включены случай с начальным положением пластины $\theta = 0^{\circ}$, что выразилось в улучшении результатов расчета. Однако даже в этом случае полученная траектория не удовлетворяет принятым критериям точности.

Рисунок 15 - Сравнение траекторий движения пластин для эксперимента и расчета

Выводы

В трех расчетах из четырех, получено достаточное совпадение траекторий движения пластины по сравнению с экспериментом.

Методика расчета на программах вычислительной гидродинамики с разрешением взаимного движения Эйлеровых сеток значительно выигрывает в точности перед описанной в [5] методикой расчета траектории по методу Монте-Карло. Точность совпадения результатов расчета по методу Монте-Карло с экспериментальными данными образована подбором параметров положения пластины и проведением большого количества расчетов, с целью нахождения траектории максимально близкой к экспериментальной. При этом разброс в конечных положениях пластины может доходить до 1,8 - 2 метров. Максимальное отклонение от экспериментальной траектории, при решении на программном продукте ЛОГОС, зафиксировано в расчете с квадратной пластиной, изначально расположенной вертикально. Это отклонение равно 0,15 м.

В расчете с вертикальной квадратной пластиной можно улучшить точность, используя DES моделирование вихревых структур, а также моделируя тракт аэродинамической трубы.

Можно заключить о целесообразности применения базового программного обеспечения ЛОГОС - Аэрогидромеханика для расчетов движения тела под воздействием обтекающего дозвукового потока без возникновения отрывных течений.

Библиографический список

1.Hadzic H. Development and application of Finite Volume Method for the Computation of Flows Around Moving Bodies on Unstructure, Overlapping Grids. Hamburg: Technische Universität Hamburg - Harburg, 2005: http://file.scirp.org/pdf/WJM_2013111413362278.pdf

2.Roache P.J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa, 1998. 446 pp.

3.Вершков В.Ф., Воронич И.В., Вышинский В.В. Методические особенности численного моделирования в рамках сеточных методов поля течения около несущего винта на режиме висения с учетом вихревой структуры // Труды МАИ, 2015, № 82: http://www.mai.ru/science/trudy/published.php?ID=58628

4.Кравчук М.О., Кудимов Н.Ф., Сафронов А.В. Вопросы моделирования турбулентности для расчета сверхзвуковых высокотемпературных струй // Труды МАИ, 2015, № 82: http://www.mai.ru/science/trudy/published.php?ID=58536

5.Papadakis M., Yeong H.W., Shimoi K., Wong S.H. Ice Shedding Experiments with Simulated Ice Shapes Wichita State University // 1st AIAA Atmospheric and Space Enviroments Conference. Wichita. Kansas (USA). 2008, http://www.enu.kz/repository/2009/AIAA-2009-3792.pdf.

6. Тенишев Р.Х., Строганов Б.А., Савин В.С., Кординов В.К., Тесленко А.И., Леонтьев В.Н. Противообледенительные системы летательных аппаратов. - М.: Машиностроение, 1967. - 320 с.

7.Мещерякова Т.П. Проектирование систем защиты самолетов и вертолетов. -М.: Машиностроение, 1977. - 232 с.

8. Трунов О.К. Обледенение самолетов и средства борьбы с ним. - М.: Машиностроение, 1965. - 248 с.

9. Авиационные правила - Часть 25. ОАО «АВИАИЗДАТ». редакция 3 с поправками: http://www.mak.ru/russian/info/add_doc/files/AP-25_2014.pdf

10.Certification of Transport Category Airplanes for Flight in Icing Conditions. Federal Aviation Administration, 2004.

11.Papadakis M., Yeong H.W., Shimoi K. Parametric Investigation of Ice Shedding from a Business Jet Aircraft // Aircraft & Engine Icing International Conference. 2007. SAE Paper 2007-01-3359.

12.Chandrasekharan R., Hinson M. Trajectory Simulation of Ice Shed from a Business Jet // SAE World Aviation Congress and Exposition. 2003. SAE-2003-01-3032.

13.Танненберг И.Д., Ермакова Ю. Численное моделирование нестационарных характеристик створок подпитки воздухозаборника // Материалы XV Международной конференции "Супервычисления и математическое моделирование", 2014, Саров, С.127.