### УДК 621.311.24

# Верификация программного пакета ANSYS Fluent при исследовании аэродинамических характеристик ветроколеса Савониуса

### Глазков В.С.\*, Игнаткин Ю.М.\*\*

Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия \*e-mail: <u>gvs29@ya.ru</u>

\*\**e*-mail: <u>k102@mai.ru</u>

### Аннотация

В работе представлены результаты расчетов аэродинамических характеристик ротора Савониуса S-типа, выполненные методом численного моделирования гидродинамических процессов (Computational Fluid Dynamics – CFD) в программном пакете ANSYS Fluent. Применен решатель 6DOF и смоделирована задача о раскручивании ветроколеса от состояния покоя до выхода на рабочие обороты под действием набегающего потока различной скорости. Проведено сравнение полученных значений коэффициентов статического и динамического момента, значений КПД ветроколеса и показано удовлетворительное совпадение С экспериментальными данными на различных режимах работы ветряка. Получены результаты расчетов поперечной силы, возникающей при вращении ветроколеса Sтипа в диапазоне скоростей набегающего потока V=6..7,5 м/с, необходимые для дальнейшего прочностного анализа в случае установки ветряка на несущие конструкции тихоходных летательных аппаратов в качестве аварийного источника энергии.

Ключевые слова: ротор Савониуса, метод CFD, аэродинамические характеристики, верификация.

## 1. Введение

Энергия ветра сегодня является уже сформированной, конкурентоспособной и экологически чистой технологией, широко используемой во многих странах мира [7]. В настоящее время в авиационной технике, в частности в пассажирских лайнерах, в качестве аварийных источников энергии используются ветрогенераторы пропеллерного типа, которые, в случае нештатной ситуации помещаются за борт самолета и под действием набегающего с большой скоростью потока вырабатывают энергию, достаточную для бесперебойной работы основных бортовых систем. На тихоходных летательных аппаратах – дирижаблях и аэростатах применение ветрогенераторов пропеллерного типа затруднено из-за небольших скоростей набегающего потока и негативного влияния близости экрана на их эффективность.

Поэтому особое внимание сейчас уделяется развитию и исследованиям наиболее востребованных на практике ветроэнергетических установок малой мощности с вертикальной осью вращения, которые, в отличие от установок пропеллерного типа, имеют простую и легкую трансмиссию, основные агрегаты которой располагаются компактно, что значительно упрощает их монтаж и обслуживание на дирижаблях и аэростатах, а так же способны запускаться и работать вблизи экрана при любых направлениях ветра без каких-либо специальных механических устройств, ориентирующих ротор «на ветер» [1].

Наиболее простым изготовлении, В эксплуатации обслуживании И является ветроэнергетическая установка с ротором Савониуса, представляющим собой конструкцию с лопастями, имеющими форму цилиндрических поверхностей (рис. 1). сверху при виде «S». Ha напоминающую латинскую букву сегодняшний Савониуса момент ротор недостаточно широко изучен, и задача проведения исследований для получения наивыгоднейших аэродинамических характеристик является актуальной.



Рис. 1. Ветроколесо Савониуса, изготовленное из подручных средств.

Известны результаты экспериментов, проведенных с различными конфигурациями ротора Савониуса в аэродинамических трубах [5], [6], [14], [15], [16], [17], [19], [20], однако решение задачи оптимизации параметров ротора экспериментальным методом трудоемко и может занять большое количество времени. Кроме того, модельный эксперимент часто не позволяет обеспечить полное подобие натуре, что снижает физическую точность полученных результатов.

В связи с развитием вычислительных мощностей современных компьютеров, всё большую популярность получают методы вычислительной аэродинамики - CFD, основанные на численном решении дифференциальных уравнений Навье - Стокса различными способами [10]. Эти методы реализованы, в частности, в программном пакете Ansys Fluent [12], который будет использован в работе в качестве инструмента для расчета аэродинамических характеристик ветряков.

## 2. Постановка задачи

Ротор Савониуса имеет сложную с аэродинамической точки зрения конфигурацию, состоящую из профилей имеющих большую кривизну при относительно малой толщине. При моделировании обтекания ротора необходимо учитывать нестационарность процессов, вызванных эффектами динамического срыва потока с лопастей, их влияние на характер течения в спутном следе.

Для проведения верификации программного пакета Ansys Fluent рассматривается ротор Савониуса, имеющий геометрические характеристики, которые использовались при проведении эксперимента в аэродинамической трубе в работе [19]. В эксперименте исследовался ротор Савониуса с установленными торцевыми шайбами, диаметр которых значительно превышал диаметр ротора, что позволяет пренебречь концевыми эффектами на лопастях и решать задачу с ротором Савониуса бесконечно большого размаха в двумерной постановке.

# 2.1. Математический аппарат

При описании аэродинамических процессов, возникающих при обтекании ротора Савониуса используются уравнения Навье-Стокса для несжимаемой жидкости, записанные в дифференциальной форме. Прямое численное решение (Direct Numerical Simulation – DNS) полных уравнений движения требует применения мелких сеток, что негативно сказывается на времени расчета и

значительно увеличивает затраты вычислительных ресурсов. Поэтому в настоящей работе для исключения локальных мелкомасштабных параметров потока применен способ осреднения по Рейнольдсу уравнений Навье-Стокса (*Reynolds Averaged Navier–Stokes equations – RANS*), замкнутых с помощью двухпараметрической модели турбулентности «*k-e Realizable»* [2], [3]:

$$\begin{cases} \frac{\partial \mathbf{u}_{j}}{\partial \mathbf{x}_{j}} = 0; \\ \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{t}} + \frac{\partial \left(\mathbf{u}_{j}\mathbf{u}_{i}\right)}{\partial \mathbf{x}_{j}} = -\frac{1}{\rho} \frac{\partial \mathbf{p}}{\partial \mathbf{x}_{i}} + \frac{\partial}{\partial \mathbf{x}_{j}} \left[ \mathbf{v}_{eff} \left( \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{j}} + \frac{\partial \mathbf{u}_{j}}{\partial \mathbf{x}_{i}} \right) \right], \end{cases}$$
(2.1.1)  
(2.1.2)

где x<sub>i</sub>, i=1,2 - декартовы координаты (x, y); t - время; u<sub>i</sub>, u<sub>j</sub> - декартовы составляющие вектора скорости (u); p - давление;  $\rho$  - плотность;  $v_{eff} = v + v_t$  - эффективный коэффициент кинематической вязкости; v, v<sub>t</sub> - молекулярный и турбулентный коэффициенты кинематической вязкости [8].

Используемая модель турбулентности, как отмечено в [4], более точно предсказывает распределение диссипации плоских и круглых струй, что обеспечивает лучшее описание вращающихся потоков, пограничных слоев, подверженных сильным градиентам давления, отрывных течений и рециркуляционных потоков.

На основе предварительных исследований, проведенных на вращающихся цилиндрах и плоских пластинках, было установлено, что данная модель турбулентности в сравнении с другими показала наиболее близкие к эксперименту результаты.

## 2.2. Исходные данные и расчет

В работе [19] представлены результаты эксперимента, проведённого в дозвуковой аэродинамической трубе открытого типа. Получены аэродинамические характеристики исследуемых роторов Савониуса различных конфигураций при числах  $Re = 1,2x10^5$  и  $Re = 1,5x10^5$ , что соответствует скорости невозмущенного потока V=6 м/с и V=7.5 м/с, рассчитанным по диаметру ротора D = 0,24 м.

На общем виде расчетной схемы (см. рис. 2) указаны основные геометрические размеры ветроколеса, а также угол поворота ротора  $\theta$ , возникающий при набегании невозмущенного потока воздуха со скоростью *V*.



Рис. 2. Общий вид расчетной схемы

Динамические расчетные сетки строились с помощью генератора сеточных моделей Ansys Meshing [11], [13] и имеют комбинированную топологию (см. рис. 3...5). Расчетная область задана прямоугольником с полукруглой частью со стороны набегающего потока (рис. 3).

Боковые границы расчетной области располагаются от модели ротора Савониуса на расстоянии 3D, задняя на 7D, передняя на 3D, где D = 0,24 м. Расчетная сетка содержит около 300000 ячеек треугольной и прямоугольной формы. Для учета влияния пограничного слоя по контуру профилей была создана зона прямоугольных ячеек (см. рис. 4). На границе области *Rotate*, расположенной вокруг модели ротора и имеющей размер 1,25D (см. рис. 5), и окружающего расчетного домена *Outer* было применено условие скольжения сеток (*Sliding Mesh*) для моделирования вращения [11].



Рис. 3. Расчетный домен



Рис. 4. Применение

комбинированной сетки для учета

влияния пограничного слоя.



Рис. 5. На границе областей Rotate и Outer

применено условие скольжения сеток.

Внешние силы и моменты, приложенные к поверхности ротора Савониуса вычислялись численным интегрированием давления и напряжения по поверхностям лопастей при помощи расчетной модели шести степеней свободы 6DOF (Six Degree of Freedom). Для расчета углового вращения решатель кода Ansys Fluent и модель 6DOF используют значения сил и моментов, а также функции пользователя UDF (User Define Functions), представляющие собой файлы макроса, написанного на языке «С++», которые подсоединяются к расчетному модулю путем подготовки и загрузки динамической библиотеки с помощью внешнего компилятора. Функции пользователя UDF содержат информацию 0 массовых И инерциальных характеристиках сечения ротора Савониуса, а также инструкции и ограничения по реализации движения сечения в пространстве с заданным числом степеней свободы.

## 3. Результаты численного эксперимента

На рис. 6, 7 представлены результаты экспериментальных зависимостей мгновенных значений коэффициента крутящего момента ротора *Cm* от угла его поворота  $\theta$  (см. рис. 2) за полный оборот ротора. Здесь же нанесены результаты расчетов основных характеристик ротора Савониуса полученные методом CFD для двух значений чисел Re =  $1,2x10^5$  и Re =  $1,5x10^5$ , соответствующих условиям эксперимента [19], где

$$Cm = \frac{4T}{\rho V_{\infty}^2 D^2 H}$$



Рис. 6. Изменение коэффициента крутящего момента С<sub>т</sub> по углу поворота θ

ротора при  $\text{Re} = 1,2 \times 10^5$ 



Рис. 7. Изменение коэффициента крутящего момента Ст по углу поворота  $\theta$  ротора при Re = 1,5x10<sup>5</sup>

Из представленных зависимостей  $Cm = f(\theta)$  следует, что для двух исследуемых значений чисел Re =  $1,2x10^5$  и Re =  $1,5x10^5$  наблюдается удовлетворительное совпадение расчетов с экспериментом [19] изменения мгновенных значений коэффициентов крутящего момента *Cm* по углу поворота  $\theta$ ротора.

На рис. 8 также наблюдается удовлетворительное совпадение расчетных и [19] зависимостей осредненных оборот экспериментальных за значений коэффициента мощности зависимости CpВ от различных значений быстроходности λ ветряка, где

$$Cp = \frac{2T\omega}{\rho V_{\infty}^{3}DH}, \quad \lambda = \frac{\omega D}{2V_{\infty}}$$



Рис. 8. Зависимость осредненного за оборот коэффициента мощности Ср от коэффициента быстроходности λ ротора Савониуса

На рис. 9, 10 представлены графики зависимостей мгновенных значений величины поперечной силы Fy по времени, возникающей при раскручивании ротора Савониуса от момента старта (t=0,  $\omega=0$ ) до выхода на постоянные обороты ( $\omega=const$ ) и направленной перпендикулярно вектору скорости набегающего потока в поперечной плоскости. Наличие поперечной силы Fy, обусловленой эффектом Магнуса, возникающем при вращении ротора [18], вызывает смещение графика поперечной силы вниз по оси ординат.



Рис. 9. Пульсация по времени величины поперечной силы *Fy* при скорости набегающего потока V = 6 м/с от момента запуска до выхода на установившееся

вращение.



Рис. 10. Пульсация по времени величины поперечной силы *Fy* при скорости набегающего потока V = 7.5 м/с от момента запуска до выхода на установившееся вращение.

На рис. 11 представлены расчетные зависимости, характеризующие изменение частоты вращения  $\omega$  ротора от времени *t* с момента старта (*t*=0) до *t*=5с при скорости набегающего потока V = 6 м/с и V = 7,5 м/с.



Рис. 11 Изменение частоты вращения *ω* ротора Савониуса от времени *t* с момента старта.

При расчете времени выхода ротора Савониуса на установившийся режим не учитывались потери на трение в подшипниках и узлах трансмиссии, которые неизбежно возникают в реальной конструкции. Данные кривые позволяют качественно оценить влияние скорости набегающего потока на время раскручивания ветроколеса.

## 4. Заключение

Результаты численного эксперимента, проведенного при помощи программного пакета CFD анализа Ansys Fluent, основанного на решении осредненных Рейнольдсу уравнений Навье-Стокса, ПО замкнутых дифференциальной двухпараметрической моделью турбулентности «k-e Realizable», удовлетворительное совпадение с экспериментальными показали данными, достоверности полученными В аэродинамической трубе, что говорит 0 применяемого расчетного метода.

Применение скользящих динамических сеток комбинированной топологии позволяет решать задачу обтекания ветроколеса Савониуса с учетом влияния вязкости в нестационарной постановке.

Расчетная модель шести степеней свободы 6DOF управляемая пользовательской функцией UDF позволяет решить задачу раскручивания ротора Савониуса под действием набегающего потока и определить внутренние силы, возникающие при вращении ветроколеса в период от старта до выхода на режим, характеризующийся постоянным по времени значением частоты вращения ротора  $\omega$ , что является входными данными для прочностного анализа при установке ветряка на несущие конструкции тихоходных летательных аппаратов, таких как дирижабли, в качестве аварийного источника энергии.

# Библиографический список

Бубенчиков А.А., Сикорский С.П., Терещенко Н.А., Ковалев Г.А., Чечулин
В.Д. Целесообразность применения ветроэнергетических установок малой мощности с вертикальной осью вращения в Омском регионе // Молодой ученый.
2016. № 22. Часть 3. С. 22 - 25.

2. Игнаткин Ю.М., Константинов С.Г. Исследование аэродинамических характеристик профиля и законцовок лопасти несущего винта вертолета методами CFD // Труды МАИ. 2012. № 57. URL: http://trudymai.ru/published.php?ID=30874  Исследование аэродинамических характеристик несущего винта вертолёта методом CFD // Труды МАИ. 2012. № 57. URL: <u>http://trudymai.ru/published.php?ID=30875</u>

Коркодинов Я.А. Обзор семейства k-е моделей для моделирования турбулентности // Вестник Пермского национального исследовательского политехнического университета. Машиностроение. Материаловедение. 2013. Т. 15. № 2. С. 5 - 16.

Кривцов В.С., Олейников А.М., Яковлев А.И. Неисчерпаемая энергия. Кн. 2.
Ветроэнергетика: учебник. - Харьков: Национальный аэрокосмический университет,
2004. - 519 с.

 Моди Фернандо. Характеристики ветродвигателя Савониуса // Современное машиностроение. 1989. № 10. С. 139 - 148.

7. Перспективы мировой ветроэнергетики, GWEC, сентябрь 2006. URL:<a href="http://docplayer.ru/30294028-Perspektivy-mirovoy-vetroenergetiki.html">http://docplayer.ru/30294028-Perspektivy-mirovoy-vetroenergetiki.html</a>

8. Редчиц Д.А. Численное моделирование нестационарных турбулентных отрывных течений при обтекании ротора Савониуса // Авиационно-космическая техника и технология. 2008. № 5 (52). С. 53 - 57.

 Сизов Д.А. Развитие и применение метода дискретных вихрей в задачах аэродинамики и динамики ротора Савониуса: Дисс....канд. техн.наук. – Казань: 2013. - 153 с.

10. Ша М., Агульник А.Б., Яковлев А.А. Анализ результатов математического моделирования натекания дозвукового потока на профили лопаток в двухмерной

постановке // Труды МАИ. 2017. № 93. URL: <u>http://trudymai.ru/published.php?ID=80297</u>

 ANSYS Meshing Users Guide. ANSYS Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317, 2013. URL: <u>http://www.ansys.com</u>

12. ANSYS FLUENT 6.3. Theory Manual. Fluent Inc. Central Source Park, 10 Cavendish Court, Lebanon, NH 03766, USA, 2005. URL: <u>http://www.Fluent.com</u>

 Cottier F., Menet J-L. Etude paramétrique du comportement aérodynamiqued'une éolienne lente à axe vertical de type Savonius, Université de Valenciennes, Le Mont Houy, F-59313 Valenciennes, Cedex 9.

14. Blackwell B.F., Sheldahl R.E., Feltz L.V. Wind tunnel performance data for twoand three - bucket Savonius Rotors, Sandia National Laboratories, 1976, SAND76-0131.

 Chauvin A., Benghrib D. Drag and lift coefficients evolution of a Savonius rotor // Experiments in Fluids, 1989, no. 8, pp. 118 - 120.

 Fujisawa N. Velocity measurements and numerical calculations of flow fields in and around Savonius rotors // Journal of Wind Engineering and Industrial Aerodynamics, 1996, no. 59, pp. 39 - 50.

17. Fujisawa N., Ogawa Y., Shirai H. Power augmentation measurement and flow field visualisation for coupled Savonius rotors // Wind Engineering, 1988, no. 12(6), pp. 322 - 331.

 Jost Seifert. A review of the Magnus effect in aeronautics // Progress in Aerospace Sciences, 2012, vol. 55, pp. 17 - 45.

 Kamoji M.A., Kedare S.B., Prabhu S.V. Experimental investigations on single stage modified Savonius rotor // Applied Energy, 2009, vol. 86, pp. 1064 – 1073. 20. Ushiyama I., Nagai H. Optimum design configurations and performances of Savonius rotors // Wind Engineering, 1988, no. 12 (1), pp. 59 - 75.