СИСТЕМЫ РАЗГРУЗКИ НАСОСОВ

А.А. Волков, А.А. Степанов

Объектом исследования были системы управления подачей гидронасоса. Работы связаны с исследованием энергетических характеристик блоков питания. Особое внимание было уделено эффективности блоков питания на различных режимах разгрузки. В ходе работ были проанализированы причины снижения КПД и возможные пути решения этой проблемы.

Проведенные работы связаны, в основном, с исследованием энергетических характеристик насосов и блоков питания, построенных на базе этих насосов.

Особое внимание было уделено снижению объемных и механических потерь и, естественно, повышению КПД блоков питания на малых подачах насосов, поскольку такой режим работы блоков питания является характерным для авиационных гидравлических систем. Разгрузка насоса по подаче приводит к большим объемным и механическим потерям из-за большого давления на этом режиме. Поэтому для улучшения энергетической эффективности блоков питания, выполненных на базе спаренных насосов необходимо предусмотреть режимы разгрузки по расходу и давлению одного или нескольких насосов.

Большинство систем разгрузки насосов по расходу и давлению можно свести к двум основным схемам, в которых разгрузка осуществляется до, практически, сливного давления или до некоторого минимального давления.

Рассмотрим две типовые схемы разгрузки одного из насосов на режиме малых подач (рис. 1 и рис. 2).

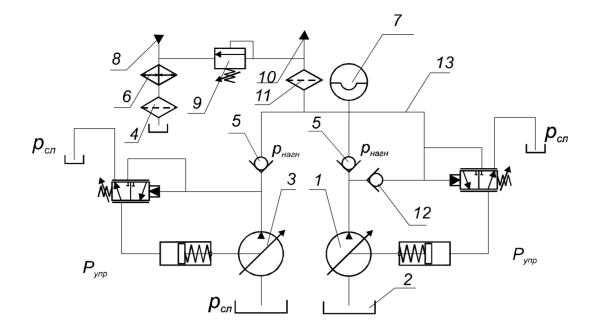


Рисунок 1 - Структура блока питания с разгрузкой от второго насоса: 1,3—насосы; 2—бак; 4,11—фильтры; 5,12—обратный клапан; 6—теплообменник; 7—гидроаккумулятор; 8—сливная гидролиния; 9—предохранительный клапан; 10—гидролиния нагнетания; 13—сигнальный трубопровод.

В блоке питания, структурная схема которого представлена на рис. 1, разгрузка насоса 1 может происходить в том случае, если регулятор разгружаемого насоса настроен на давление, меньшее, чем у неразгружаемого насоса 3. Если давление в системе увеличилось и стало выше, чем давление настройки регулятора насоса 1, то жидкость по трубопроводу 13, закрыв обратный клапан 12, переведет насос 1 на режим "нулевой подачи". Давление в линии нагнетания насоса 1 упадет из-за объемных потерь до давления в полости всасывания, т.е. насос перейдет в режим разгрузки по подаче и давлению. Потери энергии будут только на перемешивание масла в корпусе насоса 1 и потери "холостого хода" на "нулевом угле". Исчезнут объемные потери в механизме подачи и линии дренажа насоса, а также потери кулоновского (сухого) трения.

Подача неразгружаемого насоса, как правило, меньше, чем разгружаемого.

Данная схема разгрузки приемлема для систем, в которых давление изменяется с любой скоростью (в том числе и медленно).

В блоке питания, схема которого представлена на рис. 2, разгрузка насоса может производиться как вручную при включении выключателя 15, так и автоматически, за счет срабатывания реле давления 12. При этом жидкость через электрогидравлический кран 14 из полости нагнетания разгружаемого насоса, минуя золотник регулятора, поступит непосредственно в цилиндр регулятора подачи, и будет удерживать наклонную шайбу на "нулевом угле". Давление в механизме подачи за счет утечек снизится.

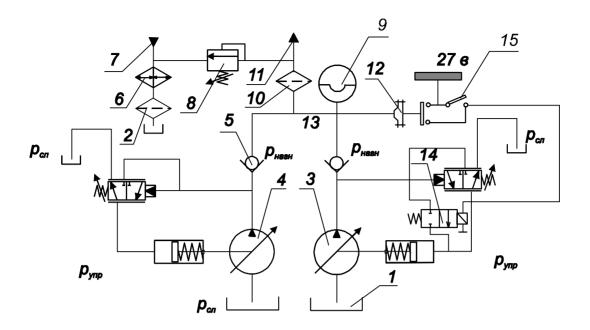


Рисунок 2 — структура блока питания с разгрузкой электрокраном: 1-бак; 2,10-фильтры; 3,4-насосы; 5,13-обратный клапан; 6-теплообменник; 7-сливная гидролиния; 8-предохранительный клапан; 9-гидроаккумулятор; 10-гидролиния нагнетания; 12-реле давления; 14-электрокран; 15-выключатель.

Насос будет работать с давлением в линии нагнетания, необходимом для удержания наклонной шайбы на малом угле и достаточном для компенсации утечек автоматически.

В связи с тем, что давление, которое необходимо создать в цилиндре регулятора для удержания наклонной шайбы на "нулевом" угле составляет 12... 25% от максимального, все потери, зависящие от давления, снизятся соответственно. В данной схеме разгрузки насоса происходит переход с системы регулирования дифференциально-дроссельного типа на систему регулирования прямого действия.

В механизме подачи энергия будет тратиться - на перемешивание масла в корпусе насоса и на потери холостого хода на малом угле подачи.

Если в блоке питания установлен один большой насос с электрокраном, отключающим золотник регулятора, то при срабатывании электрокрана OT электровыключателя переходит на режим работы с регулятором прямого действия на пониженное давление, т.е. изменяется структура системы управления. В этом случае усилие затяжки пружины силового цилиндра регулятора должно выбираться таким, чтобы пониженное давление обеспечивало нормальную работу гидросистемы на крейсерском режиме полета. Проведенные экспериментальные исследования и расчеты показали, что происходит существенное увеличение КПД блока питания, практически, в полтора раза в диапазоне малых подач (рис. 3).

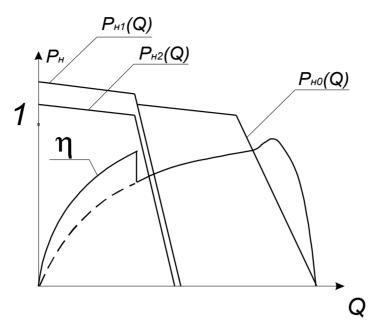


Рисунок 3- Расходная характеристика блока питания: Р_н1- давление в линии нагнетания первого насоса, Р_н2- давление в линии нагнетания второго насоса, η- КПД блока питания.

Переходный процесс переключения насоса с одного режима регулирования на другой характеризуется забросами давления в линии нагнетания разгружаемого насоса (при его отключении от системы) и в гидросистеме (при подключении насоса к системе). Забросы давления связаны с несовпадением характеристик насосов блока питания при установившемся режиме работы [1].

На рис. 4 и рис. 5 представлены расчетные схемы механизма регулирования.

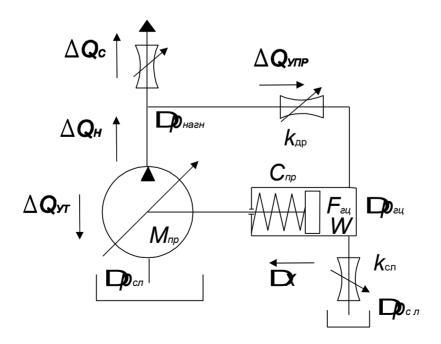


Рисунок 4 - Расчетная схема регулятора: ΔQ_{C} –расход через нагрузочный дроссель в линии нагнетания, ΔQ_{H} –расход от насоса, ΔQ_{yr} –расход, связанный с утечками рабочей жидкости из линии нагнетания насоса, ΔQ_{ynp} –расход в линии регулирования насоса, M_{np} –приведенная к штоку сервоцилиндра управления масса механизма регулирования, F_{rq} - эффективная площадь поршня регулятора, C_{np} - жесткость пружины регулятора, Δp_{Harr} - давление в линии нагнетания, Δp_{cn} - давление в линии слива, Δp_{rq} -давление под поршнем сервоцилиндра, Δx - перемещение поршня сервоцилиндра.

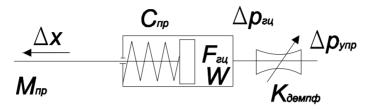


Рисунок 5-Расчетная схема разомкнутого звена : $W(W_{\text{гц}})$ — рабочий объем в полости сервоцилиндра, $K_{\text{демпф}}$ - коэффициент относительного демпфирования.

Были рассмотрены уравнения баланса расхода

$$\Delta Q_{\scriptscriptstyle H} = \Delta Q_{\scriptscriptstyle c} + \Delta Q_{\scriptscriptstyle ynp} + \Delta Q_{\scriptscriptstyle ym}$$

$$\Delta Q_{ynp} = \Delta Q_{cx} + \Delta Q_{cx} + \Delta Q_{x}$$

где $\Delta \mathcal{Q}_c$ - расход через нагрузочный дроссель в линии нагнетания, равный

$$\Delta Q_C = \frac{\partial Q_C}{\partial p_H} \cdot \Delta p_H + \frac{\partial Q_C}{\partial r} \cdot \Delta r = k_{Q_P} \cdot \Delta p_H + k_{Q_r} \cdot \Delta r,$$

где

r—сопротивление нагрузочного дросселя,

$$\Delta Q_{\scriptscriptstyle H} = \frac{\partial Q_{\scriptscriptstyle H}}{\partial x} \cdot \Delta x = -k_{\scriptscriptstyle H} \cdot \Delta x$$
 -расход от насоса,

 $\Delta Q_{ym} = k_{ym} \cdot \Delta p_{_H}$ -расход, связанный с утечками рабочей жидкости из линии нагнетания насоса,

$$\Delta Q_{cж} = rac{W_{\it eq}}{E} rac{\partial \Delta p_{\it eq}}{\partial t} = rac{W_{\it eq} \cdot s}{E} \cdot \Delta p_{\it eq}$$
 -расход, связанный со сжимаемостью рабочей жидкости в

полости сервоцилиндра,

$$\Delta Q_x = \frac{d\Delta x}{dt} F_{zu} = F_{zu} \cdot s \cdot \Delta x$$
 -расход на перемещение поршня сервоцилиндра, E - модуль упругости жидкости.

Запишем уравнение связи давлений в полости сервоцилиндра и линии нагнетания насоса

$$\Delta Q_{ynp} = k_{\partial p} (\Delta p_{\scriptscriptstyle H} - \Delta p_{\scriptscriptstyle \mathcal{E}_{\mathcal{U}}}),$$

где Δp_{eq} - давление в полости сервопоршня цилиндра регулятора.

Уравнение динамики будет иметь вид

$$m_{np}\frac{d^2\Delta x}{dt^2} = \Delta p_{eq} F_{eq} - c_{np} \Delta x - b \frac{d\Delta x}{dt},$$

где m_{np} (Мпр) - приведенная масса, b - коэффициент вязкого трения.

Таким образом, имеем систему уравнений

$$\begin{split} m_{np} \, \frac{d^2 \Delta x}{dt^2} &= \Delta p_{zu} F_{zu} - c_{np} \Delta x - b \, \frac{d \Delta x}{dt} \\ \Delta Q_{ynp} &= k_{\partial p} (\Delta p_u - \Delta p_{zu}) \\ \Delta Q_u &= \Delta Q_c + \Delta Q_{ynp} + \Delta Q_{ym} \\ \Delta Q_{ynp} &= \Delta Q_{cxc} + \Delta Q_{cx} + \Delta Q_x \, . \end{split}$$

Проведя преобразования Лапласа и проделав соответствующие выкладки, можно получить передаточную функцию системы регулирования с учетом сжимаемости рабочей жидкости, сопротивления подводящих и сливных каналов и массы приведенной нагрузки

$$\frac{\Delta p_{n}}{\Delta r} = \frac{k_{Qr} \left[\left(\frac{W}{E} m_{np} s^{3} + \left(\frac{W}{E} b + m_{np} k_{cn} + m_{np} k_{\partial p} \right) s^{2} + \left(F^{2} + \frac{W}{E} c_{np} + b k_{cn} + b k_{\partial p} \right) s + k_{cn} c_{np} + k_{\partial p} c_{np} \right]}{\left(k_{Qp} + k_{n} \frac{F}{c_{np}} \right) \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + F^{2} s + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} + k_{\partial p} c_{np} \right) + \frac{1}{2} \left(\frac{W}{E} m_{np} s^{3} + \frac{W}{E} b s^{2} + m_{np} k_{cn} s^{2} + m_{np} k_{\partial p} s^{2} + \frac{W}{E} c_{np} s + b k_{cn} s + b k_{\partial p} s + k_{cn} c_{np} s + b k_{\partial p} s + b$$

$$\frac{1}{+k_{op}\left(\frac{W}{E}m_{np}s^{3} + \frac{W}{E}bs^{2} + m_{np}k_{cn}s^{2} + F^{2}s + \frac{W}{E}c_{np}s + bk_{op}s + k_{cn}c_{np}\right)}$$

Данная формула представляет собой передаточную функцию типа

$$W(s) = \frac{b_0 s^3 + b_1 s^2 + b_2 s + b_3}{a_0 s^3 + a_1 s^2 + a_2 s + a_3},$$

которую после определения коэффициентов можно определить средствами автоматического регулирования и оценить характер переходного процесса в системе регулирования. При решении практических задач, касающихся доработок системы регулирования с целью получения в конкретной гидравлической системе требуемых динамических характеристик и системы в целом можно воспользоваться упрощенной динамической моделью регулятора [2].

Как показали экспериментальные исследования, особенно большие забросы давления, происходят в случае работы разгружаемого насоса перед отключением с некоторым расходом в гидросистему. При таком режиме разгрузки наблюдались забросы давления в линии нагнетания гидросистемы свыше 60 кгс/см².

Перенастройкой регуляторов насосов можно добиться некоторого снижения забросов давления и устойчивого переключения насоса на режим разгрузки или нагрузки. Целью данной

работы является выбор конструктивных параметров системы переключения насоса с режима разгрузки на систему, которые обеспечивают приемлемый уровень пульсаций давления в линии нагнетания [3].

Для этого были рассмотрены линейные динамические модели системы регулирования прямого действия и дифференциально-дроссельного типа. Ориентировочные расчеты показали, что наибольшего снижения забросов давления (до 10... 15 кгс/см²) можно достигнуть при соответствии статических характеристик системы регулирования до и после переключения.

При проведении экспериментальных исследований было установлено, что в разгрузочном режиме, например, насоса НП-96 и при работе на систему с нулевой подачей углы наклона шайбы отличаются, приблизительно, в два раза. Подключение насоса к системе вызывает из-за несовпадения статических характеристик перерегулирование и, соответственно, заброс расхода.

Установка дросселирующего элемента между полостью сервоцилиндра в режиме разгрузки позволяет выбрать близкие углы нулевой подачи и на режиме разгрузки и на режиме подключения насоса к гидросистеме, т.е. добиться соответствия статических характеристик.

По работе можно сделать следующие выводы:

- 1. Переходный процесс отключения и подключения насоса к системе сопровождается забросами давления в линии нагнетания системы, достигающими 30...60 кгс/см.
- 2. Для уменьшения заброса давления необходимо обеспечить соответствие статических характеристик блока питания до отключения (подключения) насоса и после подключения (отключения) разгружаемого насоса.
- 3. Дальнейшее уменьшение заброса расхода можно обеспечить изменением статических характеристик системы разгрузки, т.е. установкой дросселирующих устройств в системе разгрузки.

Список литературы

- 1.Меланьин А.Н. Блоки питания гидравлических систем летательных аппаратов, адаптивные к режиму потребления. Руководящий технический материал авиационной техники РТМ 1703-86, 1986. 32 стр.
- 2.Прокофьев В.Н. Аксиально-поршневой регулируемый гидропривод. М.: Машиностроение, 1969. 496 стр.
- 3.Башта Т.М. Объемные насосы и гидравлические двигатели гидросистем. М.: Машиностроение, 1974. 609 стр.

Сведения об авторах

Волков Алексей Алексеевич, доцент кафедры систем оборудования летательных аппаратов Московского авиационного института (государственного технического университета), кандидат технических наук.

Степанов Александр Александрович, инженер кафедры систем оборудования летательных аппаратов Московского авиационного института (государственного технического университета).