УДК 629.73

Идеология проектирования авиационных конструкций из полимерных композиционных материалов

Ендогур А.И., Кравцов В.А.

Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993,

Россия

e-mail: nio1@mail.ru

Аннотация

Статья посвящена вопросам проектирования авиационных конструкций из композиционных материалов (КМ) и содержит проблемы, которые возникают при проектировании конструкций. При всех случаях нагружения конструкции в зоне стыка регулярной части (постоянной по составу пакета КМ) со смежной конструкцией, в слоях пакета КМ возникают объемные локальные концентрации напряжений растяжения-сжатия (смятия). В этом случае прочность конструкции будет, главным образом, зависеть от прочности связующего.

Ключевые слова: конструкция, композиционный материал, концентрация напряжений, соединения, проблемы

Существует мнение, что композиционный материал (КМ) – это «Новый материал, являющийся одновременно конструкцией». Это не совсем точно. Точнее: «Создана новая технология изготовления конструкций из волокнистого высокопрочного материала». А КМ – это один из материалов, которые, как говорят, сделал из обезьяны человека. Первый – камень, второй – палка, древесина.

Уже древние люди знали, что древесину легче всего разрушить ударом топора (клина) вдоль волокон, разрушив самое слабое звено – связующее. У КМ прочность связующего в 10-15 раз меньше прочности волокон. Случай локального разрушения связующего и является началом разрушения силовых конструкций из КМ.

Удельная прочность однонаправленного слоя полимерного КМ в 5,5...6 раз превышает удельную прочность конструкционных алюминиевых сплавов. Однако снизить во столько раз массу конструкции невозможно. Однонаправленных слоев КМ в авиационных силовых конструкциях 40...60%, допустимое напряжения на сжатие КМ в 1,5...2 раза меньше, еще дополнительный коэффициент безопасности 1,25. Итого, теоретический выигрыш в массе регулярной части силовой конструкции ≈ 33...35%

Регулярная часть конструкции из КМ сама по себе работать не может, её нужно привязать к смежной конструкции самолета, что осуществляется посредством крепежных элементов или клеевых соединений. Типовая конструкция разъемного соединения показана на рис. 1.

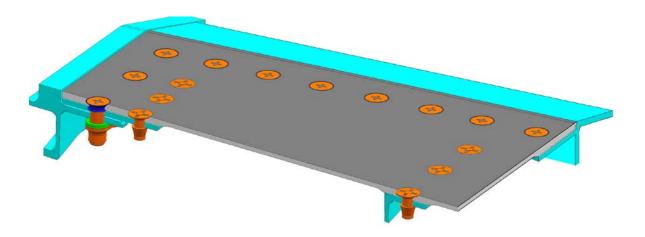
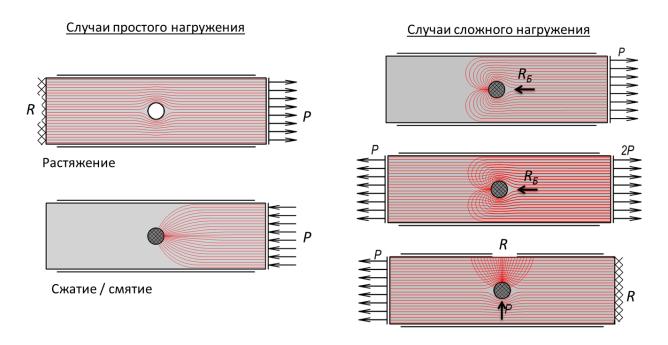
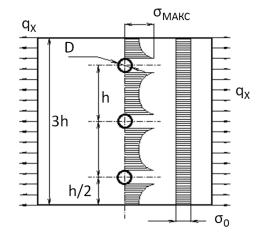


Рис. 1. Типовая конструкция разъемного соединения

При всех случаях нагружения конструкции в зоне стыка регулярной части (постоянной по составу пакета КМ) со смежной конструкцией возникают локальные концентрации напряжений, показанные на рис. 2. как сгущения линий тока напряжений растяжения-сжатия. Искривление линий тока (светлые треугольники вблизи отверстий) свидетельствует о появлении в слоях поперечных напряжений расщепления волокон, что может явиться причиной начала разрушении КМ, особенно при переменной нагрузке.




Рис. 2. Схемы силовых потоков

Причины появления концентрации напряжений в зоне крепежа различные.

Во-первых, потеря площади сечения из-за наличия отверстий, что требует увеличения толщины КМ в стыковой зоне в 1,2...1,33 раза (K_{Γ} =f(D/h = 1,2...1,33, рис. 3) для равнопрочности с регулярной частью.

Во-вторых, у отверстий в слоях КМ появляются локальные концентрации напряжений растяжения-сжатия K_0 $_{\rm KM}$ =1,58...2,24, зависящие от структуры КМ (табл. 1) и также приводящие к необходимости увеличения толщины КМ в стыке.

 $K_{\Gamma}K_{0KM}$ Таблица 1 Значения концентрации напряжений

Структура КМ,	D/h		
$\% [0^0; \pm 45^0, 90^0]$	0,1	0,3	0,5
[80; 10; 10]	2,76	2,85	3,15
[50; 40; 10]	2,51	2,62	2,97
[10; 80; 10]	2,22	2,35	2,75

Рис.3. Концентрация напряжений около отверстий

В-третьих – самое значимое – в зоне контакта появляются локальные напряжения смятия, нагружающие связующее и расщепляющие волокна КМ силой от крепежного элемента, рис. 4.

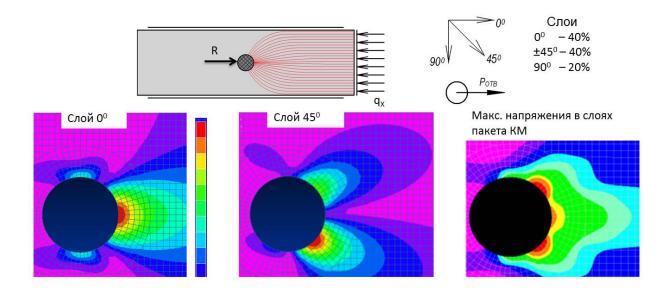


Рис. 4. Напряжения в слоях пакета от смятия под крепежом

Концентрация напряжений смятия $K_{CM\ KM}$ обусловлена анизотропией KM как по толщине пакета, так и в каждом слое в продольном (E_1) и поперечном (E_2) направлениях, табл. 2

Значения К_{СМ.КМ} в зоне отверстия от анизотропии.

Таблица 2

Материал	Высокопрочный	Углепластик	Стеклопластик	Изотропный
	углепластик			материал
E ₁ /E ₂	180000/10000	125000/8000	35000/25000	(металл)
K _{CM.KM}	2,1±0,2	1,9±0,2	1,4±0,1	Не зависит от Е

Связующее нагружается крепежом как в плоскости слоев, так и в поперечном направлении. Смятие связующего и расщепление слоев показано на рис. 5,a [Sun H.N., Grews Y.H.].

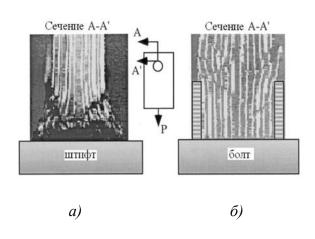
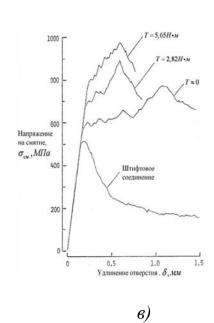



Рис.5. Характер разрушения KM при смятии:

a — разрушение связующего и расщепление КМ; δ — сдвиг волокон при затяжке болтом; ϵ — увеличение прочности при затяжке болтом.

Т – момент затяжки

Если слои КМ стянуть болтом (рис. 5,6), прочность соединения повышается в два раза (рис. 5,6). Однако, стяжка пакета КМ не всегда возможна. Кроме того, болты с головками, выходящими на аэродинамическую поверхность устанавливать нельзя.

Итак, первая проблема:

Возникновение объемной локальной концентрации напряжений в стыковых зонах и малая прочность связующего.

И первый вывод:

При любом виде нагрузки на регулярную часть конструкции, общая прочность конструкции из КМ будет зависеть от прочности связующего

Концентрация напряжений смятия в слоях КМ зависит от многих факторов: конструктивных, технологических, от свойств материала, от погрешностей в пределах допусков и от неконтролируемых дефектов.

На рис. 6 показано влияние изгибной жесткости болта и эксцентриситета нагружения на локальную концентрацию напряжений. Чем жестче болт, тем он тяжелее, но концентрация напряжений меньше. $K_{\text{CM.ЭКCII}}=1,05..1,15$

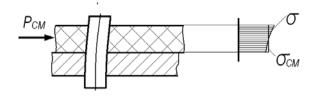


Рис. 6. Влияние эксцентриситета на коэффициент концентрации

Схема, иллюстрирующая влияние посадки болта на локальную деформацию КМ показана на рис. 7.

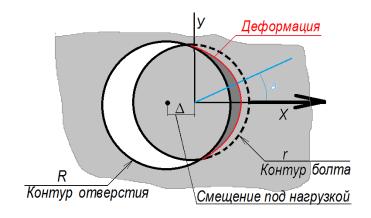


Рис.7. Деформация отверстия при нагружении болта

Зависимость $K_{\text{СМ.ПОС}} = 1,0...1,36$ от качества посадки болта приведена в табл. 3.

Зависимость коэффициента концентрации от качества посадки. Таблица 3

Диаметр болта-отверстия,	6,015	6,036	6,15	6,5
[мм] (КВАЛИТЕТ)	(H7)	(H9)	(H12)	(разъемное)
Высокопрочный				
	1,009	1,024	1,086	1,271
углепластик				
Углепластик	1,011	1,025	1,106	1,316
Стеклопластик	1,02	1,038	1,139	1,363

Чем точнее посадка (больше стоимость изготовления), тем меньше концентрация.

Величину концентрации напряжений в перечисленных выше случаях можно определить теоретически или при помощи испытаний простых образцов. Типовой образец для испытаний, показан на рис. 8.

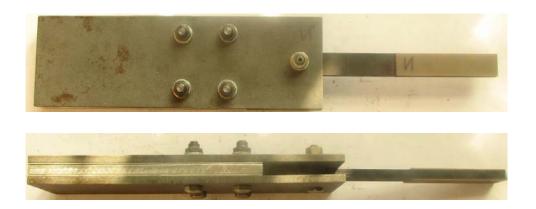


Рис. 8. Типовой образец для испытаний

Есть и другие способы создания конструкции стыка: раздвижка волокон и установка втулок для болтов, клеевые соединения, – но и они не исключают появления локальных концентраций напряжений или неравномерного отрыва слоев КМ, разрушающих связующее.

Вторая проблема:

Как оценить влияние совместного действия локальных концентраций напряжений на прочность зоны стыка и конструкции в целом?

Теоретического ответа на этот вопрос пока не существует.

Уменьшение прочности в зоне крепежа оценивается величиной $\mbox{коэффициентов потери прочности} \ \ R_i = \sigma_{MAKC}/\sigma_{ДО\Pi} = \mbox{K}\,\sigma_{CEЧЕНИЯ\,KM}/\sigma_{ДО\Pi},$

$$K_i = \sigma_{i \text{ MAKC}}/\sigma_{\text{ Сечения км}}$$

 $R_{\rm O}$ – коэффициент потери прочности регулярной зоны при наличии отверстий

 R_{CM} – коэффициент потери прочности пакета в отверстии от смятия KM.

Тогда условие прочности конструкции описывается эмпирической формулой

$$R_{\rm O} + (R_{\rm CM})^{\alpha} \le 1$$

Значение $R_O + (R_{CM})^{\alpha} > 1$ показывает, во сколько раз нужно увеличить толщину панели с зоне крепежа для равнопрочности с регулярной зоной конструкции (при $\sigma_{CEYEHUS\ KM} = \sigma_{DOII}$).

Эмпирическая формула увеличения толщины стыка панели имеет вид:

 $R_{\rm O} + (R_{\rm CM})^{\alpha} = K_0 K_{0 {\rm KM}} + (K_{{\rm CM. HOC}} \cdot K_{{\rm CM. 9KCII}} \cdot K_{{\rm CM. KM}})^{\alpha} = 3...6,$ где $\alpha = 1/2...1/3$ – показатель степени, уточняемый по результатам испытаний конкретной конструкции, изготовленной по конкретной производственной технологии.

Фактическое увеличение толщины в зоне стыка зависит от количества рядов крепежа. При двухрядном шве толщина увеличивается соответственно в 1,5...3 раза, при трехрядном – в 1...2 раза. При этом необходим учет неравномерности нагружения рядов крепежа.

Влияние локальных концентраций напряжений можно уменьшить, снизив величину действующих напряжений в максимально нагруженных слоях пакета КМ, для чего необходимо увеличить толщину этих слоев в зоне стыка, что приводит к дополнительному увеличению массы конструкции.

Прочность конструкции можно увеличить, увеличив прочность связующего, например введением частиц наноматериала, но это <u>увеличивает стоимость конструкции</u>.

На графике рис. 9 приведена зависимость выигрыша в массе при замене конструкции стрингерных панелей из B95 на конструкцию из КМ от доли объема (площади) стыковых зон, отнесенной к общей площади панели.

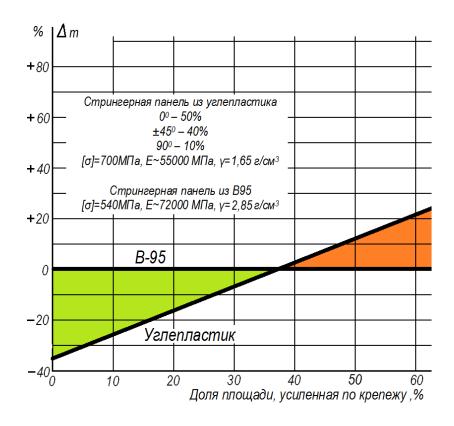


Рис. 9. Сравнение масс алюминиевой конструкции и конструкции из KM

Видно, что при отсутствии стыков выигрыш в массе конструкции 35...37%. Существует значение доли площади зоны стыка, при достижении которого применение КМ по критерию минимума массы теряет смысл. При учете массы крепежа (болтов, заклепок) эта точка сдвигается влево до значения 15...20% площади. При этом средний выигрыш в массе силовых конструкции при применении КМ составляет 20...25%, что немало!

Второй вывод:

Целесообразность применения КМ в силовых конструкциях зависит от рациональной конструкции стыков и общего объема стыковых зон.

Поэтому, применение КМ в конструкции фюзеляжей, где много вырезов (окна, двери, люки), сложнее, чем в крыле.

Третья проблема:

Существует ли оптимальная силовая конструкция (стоек, панелей) из **КМ**?

Оптимальную конструкцию из КМ создала природа. Это конструкция костей человека и животных, показанная на рисунках 12 и 13.

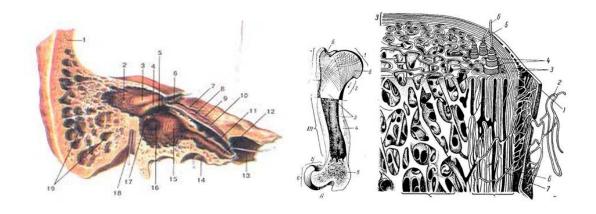


Рис. 12. Строение костей черепа

Рис. 13. Строение костей ног

В таких конструкциях прочность элементов губчатого связующего соответствует прочности несущих слоев, а запас прочности более 15 позволяет человеку существовать при форс-мажорных обстоятельствах.

С неподвижными стыками костей (череп) природа справилась довольно просто. А вот с подвижными соединениями (суставами) с точки

зрения их относительной массы и надежности, проблемы существуют даже у природы.

Третий вывод:

В оптимальной конструкции из КМ прочность связующего материала и его соединения с несущими слоями должна соответствовать прочности несущих слоев.

Такая конструкция может быть создана, например, выращиванием с использованием возможностей нанотехнологии.

Библиографический список

- 1. Васильев В.В. Механика конструкций из композиционных материалов.
- М.: Машиностроение, 1988. 272 с.
- 2. Семин М. И., Стреляев Д. В. Расчеты соединений элементов конструкций из композиционных материалов на прочность и долговечность. М.: ЛАТМЭС, 1996. 287 с.
- 2. Sun H.T., Chang F.T., Qing X.L. The Response of Composite Joints with Bolt-Clamping Loads Part 1 Model Dewelopment. J Comp Mater 2002; 36;69-92
- 4. Grews J.H. Bolt bearing fatigue of a grapfite epoxy laminate. NASA Technical Memorandum, 1980.