УДК 621.9.048:658.512.4

Особенности вырезки массивов малоразмерных близкорасположенных выступов методом импульсной электрохимической обработки

А.Р. Маннапов, А.Н. Зайцев

Аннотация

Рассмотрены вопросы вырезки массивов малоразмерных (0,1...1 мм) близкорасположенных выступов методом импульсной электрохимической обработки (ЭХО) вибрирующим электродом-инструментом в виде тонкой неизолированной перфорированной пластины. Указаны специфические особенности данной технологической схемы обработки и сделана попытка дать их формализованное описание.

Ключевые слова

Импульсная электрохимическая обработка; электрод-инструмент; перфорированная пластина; массив выступов.

Введение

В настоящее время одним из актуальных направлений развития техники является разработка И совершенствование технологий создания массивов малоразмерных близкорасположенных функциональных выступающих элементов конструкций поверхностях металлоизделий. В качестве примера их применения можно указать детали уплотнительных устройства ГТД, магнитные дороги линейных сервоприводов и тепловые радиаторы электронных приборов.

Технологическая схема импульсной ЭХО массивов малоразмерных близкорасположенных выступов при помощи вибрирующего электрода-инструмента в виде тонкой неизолированной перфорированной пластины (ТНПП) уже описывалась нами в более ранних публикациях [1, 2], в данной же статье остановимся на формализации её

специфических особенностей, а именно – упругих деформаций и существенного омического сопротивления ТНПП, существенной неравномерности распределения плотности тока по образующей формируемых выступов и гидродинамики потока электролита.

Размерные характеристики ТНПП и массива вырезаемых малоразмерных близкорасположенных выступов указаны на рис. 1.

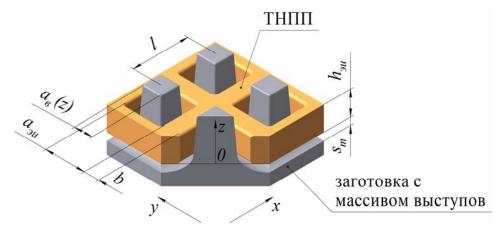


Рис. 1. Схема простановка размеров на ТНПП и заготовке с вырезаемыми выступами

1 Деформации ТНПП

В процессе обработки ТНПП ($L_{\it 3u}/h_{\it 3u}>>10$) испытывает двустороннее действие потока электролита (рис. 2, 3): с верхней стороны на неё действует гидродинамическое давление $p_1 = p_1(x,y,t)$ потока подаваемого во внутреннюю полость электрододержателя электролита, а с нижней (рабочей) стороны она подвергается избыточному давлению $p_2 = p_2(x,y,t)$, возникающему вследствие вязкого трения межэлектродной среды во время сближения электродов.

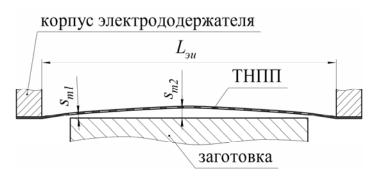


Рис. 2. Деформация ТНПП во время подачи импульса тока на начальном этапе обработки

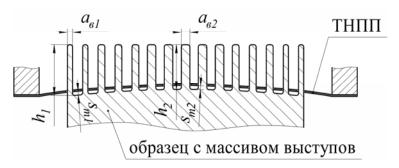


Рис. 3. Геометрия ТНПП и образца с выступами при установившемся процессе ЭХО

К общим факторам, определяющим значения давлений $p_1(x,y,t)$ и $p_2(x,y,t)$, относятся: закон колебательного движения электрододержателя станка и геометрические характеристики ТНПП.

Кроме того, давление $p_1 = p_1(x,y,t)$ является функцией давления p_0 , создаваемого насосной станцией электрохимического станка, и геометрических характеристик внутренней полости корпуса электрододержателя, а давление $p_2 = p_2(x,y,t)$ определяется распределением величин торцевых межэлектродных зазоров (МЭЗ) $s_m = s_m(x,y,t)$, вязкости газожидкостной межэлектродной среды и объёмного газонаполнения в межэлектродном промежутке (МЭП).

Во время пропускания импульса тока вследствие сближения электродов, а также процессов тепло- и газовыделения — соотношение давлений p_1/p_2 уменьшается, что приводит к прогибу ТНПП внутрь корпуса электрододержателя. При этом закон колебательного движения каждой точки ТНПП отличается от закона колебательного движения, сообщаемого электрододержателю от вибратора электрохимического станка, а значит, достижение ТНПП минимальных торцевых МЭЗ для каждой точки обрабатываемой поверхности происходит в разные моменты времени.

На начальном этапе врезания ТНПП в заготовку во время подачи импульса тока торцевой МЭЗ существенно отличается в разных точках обрабатываемой поверхности $s_m = s_m(x, y)$ (рис. 2). Это приводит к тому, что скорость анодного растворения по периферии заготовки становится больше, чем в центральной части и, соответственно, врезание ТНПП в тело заготовки по краям происходит раньше.

По мере заглубления ТНПП торцевые МЭЗ на периферии и в центре заготовки выравниваются ($s_{m1} \approx s_{m2}$), а торцевая поверхность принимает форму ТНПП в момент подачи импульса тока (рис. 3). В результате у изготовленной детали выступы на периферийной части оказываются выше центральных выступов примерно на величину прогиба ТНПП δ ($\delta \approx h_1 - h_2$). Это необходимо учитывать при разработке технологии с целью обеспечения заданных допусков на высотные размеры выступов.

Для расчёта величины прогиба ТНПП δ можно воспользоваться решениями, приведёнными в монографии [3], в которой рассмотрено большое количество задач нагружения перфорированных пластин.

Для технологического расчёта размерных характеристик электрода-инструмента представляет интерес вопрос об оптимальной ширине b перемычки и толщине ТНПП h_{9u} по критерию минимального зазора $B(h_{9u})$ между соседними выступами для заданной жёсткости ТНПП, которая определяется из условия её максимально допустимого прогиба δ (рис. 4).

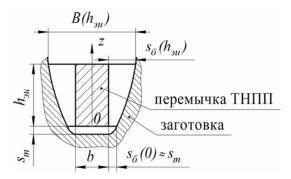


Рис. 4. Расчётная схема импульсной ЭХО при помощи ТНПП

Приняв, что проводимость электролита в боковом и торцевом МЭП равны, найдём боковой зазор $s_{\delta}(h_{\mathfrak{g}u})$ для условия вырезки линейного в поперечном сечении участка выступа:

$$s_{\delta}(h_{\mathfrak{g}u}) = \sqrt{s_{\mathfrak{m}}^2 + 2s_{\mathfrak{m}} \cdot h_{\mathfrak{g}u}} \ . \tag{1}$$

Пусть осевой момент инерции единичной перемычки найден из условия обеспечения заданной жёсткости ТНПП и равен w_0 . Тогда b и h_{3u} связаны соотношением:

$$\frac{b \cdot h_{\mathfrak{g}u}^2}{6} = w_0 \,. \tag{2}$$

Тогда зазор между соседними выступами на уровне $z=h_{3u}$:

$$B(h_{9u}) = b + 2s_{\delta}(h_{9u}) = \frac{6w_0}{h_{9u}^2} + 2\sqrt{s_m^2 + 2s_m \cdot h_{9u}}.$$
 (3)

Как видно из рис. 5 зазор между соседними выступами $B(h_{\mathfrak{su}})$ имеет экстремум (минимум).

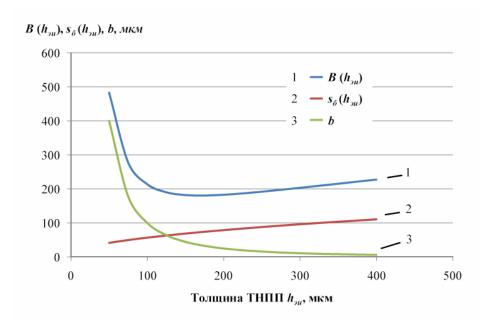


Рис. 5. Расчётная зависимость зазора между соседними выступами $B(h_{9u})$, ширины перемычки b и бокового зазора $s_{\delta}(h_{9u})$ от толщины ТНПП h_{9u} (для $6w_0$ =1 мм²)

Здесь следует указать на ограничение по минимально возможной ширине перемычки b, которое определяется технологическими возможностями метода получения отверстий в ТНПП.

Оптимальную толщину ТНПП находим из условия:

$$\frac{dB(h_{yu})}{dh_{yu}} = 0. (4)$$

Учитывая, что $h_{3u} >> s_m$, после несложных преобразований получаем:

$$h_{3u}^{opt} \approx \sqrt[5]{72w_0^2/s_m} \approx 2.37 \cdot \sqrt[5]{w_0^2/s_m}$$
, (5)

$$b^{opt} \approx 6 \cdot \sqrt[5]{w_0 \cdot s_m^2 / 5184} \approx 1.08 \cdot \sqrt[5]{w_0 \cdot s_m^2} . \tag{6}$$

Для отверстий в ТНПП имеющих криволинейную форму поперечного сечения (например, круглых) также можно определить оптимальные геометрические характеристики ТНПП из закона изменения бокового МЭЗ для коаксиальных электродов.

2 Омическое сопротивление ТНПП

Из-за малой толщины $(h_{\ni u})$ 0,05...0,5 MM) наличия множества ТНПП близкорасположенных отверстий, имеет достаточно большое омическое сопротивление.

Рассмотрим случай использования в качестве ЭИ тонкой прямоугольной пластины толщиной $h_{\ni u}$ с двоякопериодическим массивом квадратных отверстий со стороной $a_{\ni u}$ (рис. 1).

Пусть шаг отверстий в ТНПП по ортогональным направлениям OX и OY составляет l, количество отверстий в направлении OX равно N, в направлении OY равно M.

Для моделирования неравномерности подвода тока по площади обрабатываемой поверхности вследствие существенного омического сопротивления ТНПП рассмотрим схему замещения участка электрической цепи «ТНПП — МЭП», на концах которого поддерживается напряжение U (рис. 6). В данной схеме ТНПП представлен прямоугольной двоякопериодической решёткой, на гранях которой расположены сопротивления r, равные сопротивлению перемычек в ТНПП. К узлам решётки подведены проводники с сопротивлением R_{ij} , имитирующие локальные сопротивления МЭП между каждым формообразующим отверстием в ЭИ-ТНПП и формообразуемым выступом на заготовке. Заданное напряжение U поддерживается между свободными концами проводников с локальными сопротивлениями R_{ij} и периферийными узловыми точками прямоугольной двоякопериодической решётки. Так как последняя имеет размерность $(M-1)\times(N-1)$ ячеек, то задача сводится к нахождению $M\cdot N$ токов вида I_{ij} ($i=\overline{1,M}; j=\overline{1,N}$), текущих через локальные МЭП с сопротивлениями R_{ij} . Напряжения на локальных МЭП U_{ij} находятся из закона Ома для участка цепи: $U_{ij}=I_{ij}\cdot R_{ij}$.

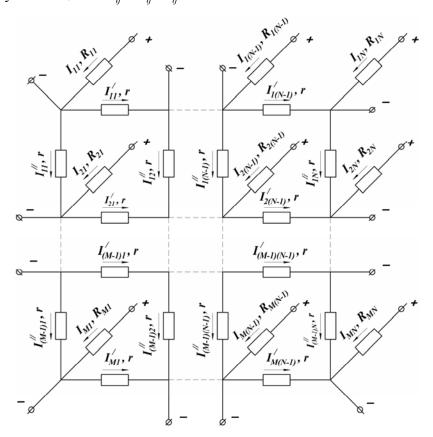


Рис. 6. Схема замещения участка цепи "ТНПП-МЭП"

Сопротивление перемычки в ТНПП можно оценить по формуле:

$$r = \rho \cdot \frac{l}{b \cdot h_{yy}},\tag{7}$$

где ρ - удельное электрическое сопротивление материала ТНПП.

Обозначим токи, идущие по перемычкам, следующим образом:

в направлении оси *OX*: I'_{ij} , где $i = \overline{1, M}$; $j = \overline{1, (N-1)}$;

в направлении оси *OY*: I''_{ij} , где $i = \overline{1,(M-1)}; j = \overline{1,N}$.

Запишем первый закон Кирхгофа для $(M-2)\cdot (N-2)$ непериферийных узлов (т.е. $i\neq 1,M$; $j\neq 1,N$):

$$I_{ij} - I'_{ij} - I''_{ij} + I'_{(i-1)j} + I''_{(ij-1)} = 0.$$
(8)

По второму закону Кирхгофа для контуров между соседними положительными полюсами:

$$I_{ij} \cdot R_{ij} - I_{i(j+1)} \cdot R_{i(j+1)} + I'_{ij} \cdot r = 0,$$
(9)

где $j \neq N$;

$$I_{ij} \cdot R_{ij} - I_{(i+1)j} \cdot R_{(i+1)j} + I''_{ij} \cdot r = 0,$$
(10)

где $i \neq M$.

Для того чтобы избавиться от токов, идущих по перемычкам (I'_{ij} и I''_{ij}), выразим их из уравнений (9) и (10) и подставим в (8). Тогда получим систему уравнений:

$$I_{(i+1)j} \cdot R_{(i+1)j} + I_{i(j+1)} \cdot R_{i(j+1)} + I_{(i-1)j} \cdot R_{(i-1)j} + I_{i(j-1)} \cdot R_{i(j-1)} - I_{ij} \cdot (4R_{ij} + r) = 0,$$

$$\text{где } i \neq 1, M \; ; \; j \neq 1, N \; . \tag{11}$$

Краевые условия токоподвода по периферии ЭИ-ТНПП формулируются следующим образом:

$$I_{1j} = U/R_{1j}, \quad I_{i1} = U/R_{i1}, I_{Mj} = U/R_{Mj}, \quad I_{iN} = U/R_{iN}.$$
(12)

Уравнения (11), (12) составляют систему ранга $M \cdot N$ с таким же числом неизвестных токов.

Локальное сопротивление каждого локального МЭП можно оценить, приняв, что токи через локальные торцевой и боковой МЭП текут параллельно, из следующего выражения:

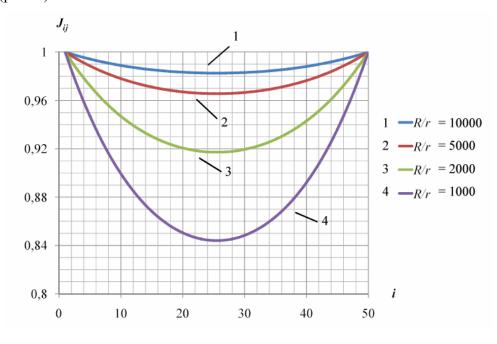
$$R_{ij} = R_{ij}^{m} \cdot R_{ij}^{\delta} / (R_{ij}^{m} + R_{ij}^{\delta}), \tag{13}$$

где R_{ij}^m — сопротивление локального торцевого МЭП, R_{ij}^{δ} — сопротивление локального бокового МЭП.

При $R_{ij} = R_0$ для всех i и j система уравнений (11) приводится к виду:

$$I_{ij} = \left(I_{(i+1)j} + I_{i(j+1)} + I_{(i-1)j} + I_{i(j-1)}\right) \cdot \frac{R_0}{4R_0 + r}.$$
(14)

При этом токи в периферийных локальных МЭП равны:


$$I_{1j} = I_{i1} = I_{(M+1)j} = I_{i(N+1)} = U / R_0.$$
(15)

Решение системы уравнений (11), (12) для общего случая реализовано численно.

Для исследования влияния размерности массива (M,N) и соотношения R/r на величину тока в локальных МЭП примем, что в качестве ТНПП выступает квадратная перфорированная пластина (M=N) и локальные сопротивления равны $(R_{ij}=R)$. Последнее равенство справедливо в момент начала подачи импульса тока при начальном формообразовании для достаточного жёсткой ТНПП.

Введём безразмерный ток:
$$J_{ij} = \frac{I_{ij}}{U \cdot R}$$
 .

Численное моделирование показывает, что J_{ij} по среднему сечению заготовки изменяется примерно по параболе (рис. 7). Таким образом, создаются предпосылки для уменьшения поперечных размеров выступов по направлению от центра к периферии заготовки (рис. 3).

Рис. 7. Расчётная зависимость распределения безразмерного тока в среднем сечении заготовки при использовании ТНПП с M=N=50

Установлено, что J_{ij} в центре заготовки (i=M/2,j=N/2) резко падает с увеличением размерности массива и уменьшением R/r (рис. 8). Для характерных для импульсной ЭХО параметрах режима кривые $J_{ij}(N)$ в области $0,2 < J_{ij}(N) < 1$ достаточно точно описываются уравнениями вида: $J_{ij} = 1 - k \cdot N^2$, где k — коэффициент, зависящий от R/r, определяется расчётным путём из графиков $J_{ij}(N)$ по математической модели.

Таким образом, существует такая критическая размерность массива, при которой в центре заготовки выполняется условие $U_{ij} < E^*$ и обработать образец будет невозможно. Критическая размерность массива:

$$N_{\kappa p} = \sqrt{\frac{U - E^*}{U \cdot k}},\tag{16}$$

где E^* - потенциал растворения материала в анодно-анионной области.

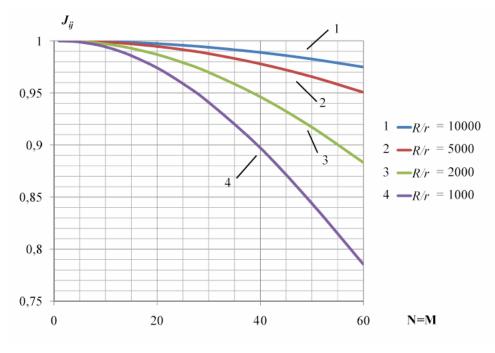


Рис. 8. Зависимость безразмерного тока в центре заготовки от размерности массива M=N для различных соотношений R/r

Расчёты показывают, что характерная величина критической размерности массива выступов составляет $N_{\kappa p}=10^2...10^3.$

Увеличить критическую размерность массива (или как вариант уменьшит разброс значений размеров в поперечном сечении выступов в пределах массива) можно путём увеличения R/r. Этого можно добиться, например, путём увеличения толщины перфорированной пластины. Однако это приведёт к увеличению s_{δ} , что с одной стороны негативно отразиться на стабильности размеров, с другой — не всегда возможно, так как для получения заданных поперечных размеров выступов придётся увеличивать размер формообразующих отверстий, а это затруднительно при их близком расположении. Второй вариант — использование материала с меньшей удельной электропроводностью для изготовления ТНПП (латунь, медь).

Также установлена расчётная зависимость $J_{ij}(N)$ от R/r (рис. 9). Здесь следует отметить, что в момент начала подачи импульса (т.е. для чистого электролита) R/r, как правило, равно 500...5000.

Резюмируя изложенное можно заключить, что в зависимости от размерности массива существует оптимальное соотношение R/r по критерию максимальной производительности обработки при ограничении по разбросу значений поперечных размеров выступов в пределах массива.

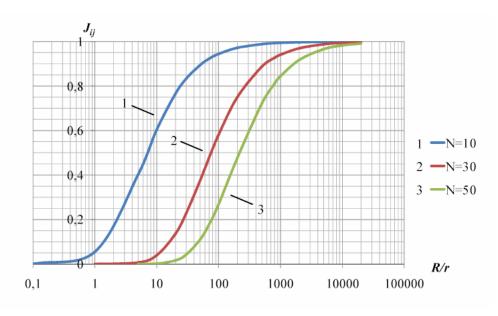


Рис. 9. Зависимость безразмерного тока в центральном МЭП (i=0,5·M; j=0,5·N) от R/r для размерностей массива M=N

3 Неравномерность распределения плотности тока по длине образующей выступов

Известно, что шероховатость поверхности после ЭХО может изменяться в широких пределах и является результатом образования микродефектов геометрии обработанной поверхности в связи с неоднородностью структуры, химических и физических свойств

материалов. Одним из параметров существенно влияющим на характер и величину микрорельефа поверхности является плотность тока.

Так как для данной схемы свойственно существенная неравномерность плотности тока по обрабатываемой поверхности (уменьшается по направлению от основания вырезаемых выступов к их вершинам), то это приводит к неравномерности величин параметров шероховатости поверхности по длине образующей выступов.

Для оценки распределения шероховатости по образующей выступа может быть предложена методика, суть которой основана на том, что в пассивирующих электролитах при обработке импульсами миллисекундной длительности высота микронеровностей поверхности зависит в основном от амплитудной плотности тока: $R_a = R_a(j)$. Поэтому оценив из математической плотность тока j в расчётных точках на образующей выступа можно определить параметры шероховатости обработанной поверхности.

4 Гидродинамика потока электролита

Четвёртой особенностью данной схемы является значительное отличие свойств межэлектродной среды в МЭП на периферии и в центре обрабатываемой заготовки, что обусловлено сложной гидродинамикой потока электролита, а она, как известно, оказывает значительное влияние на размеры МЭЗ и, следовательно, на размеры формируемых выступов.

На начальном этапе обработки форма МЭП относительно проста и условия выноса продуктов обработки наилучшие, поэтому здесь может быть достигнута наивысшая скорость подачи ТНПП. По мере заглубления ТНПП возникает дополнительное гидродинамическое сопротивление в виде вырезаемых элементов уплотнения, которые уменьшают "живое" сечение формообразующих отверстий, и затрудняют вынос продуктов анодного растворения и пузырьков газа из МЭП, что приводит к снижению электрической проводимости электролита и, соответственно, производительности обработки.

В процессе сближения электродов часть электролита (из-за разности давлений под ТНПП и над ним) устремляется в кольцевую щель между формообразующим отверстием и формируемым выступом, а другая часть движется в торцевом МЭП преимущественно в направлении от центральной части образца к периферии (рис. 10, слева).

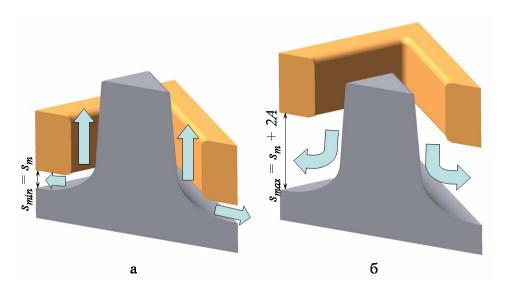


Рис. 10. Направления течения электролита в нижнем положении ТНПП (a) и в верхнем положении ТНПП (б)

При отводе ТНПП давление на его нижнюю поверхность практически отсутствует, и электролит течёт вдоль стенок кольцевой щели в прямом направлении (рис. 10, справа).

Так как условия отвода продуктов обработки по направлению к периферии заготовки улучшаются, то и размеры выступов в поперечном сечении уменьшаются в этом же направлении.

Прямые измерения поперечного сечения выступов в центре и на периферии заготовки показывают, что различие в боковом межэлектродном зазоре s_{δ} (обусловленное омическим сопротивлением ТНПП и сложной гидродинамикой потока электролита) для характерных размеров выступов 0,3...0,5 мм и при шаге их расположения порядка 0,6...1 мм составляет 10..20% для образцов с характерным габаритным размером обрабатываемой поверхности 20...30 мм.

5 Примеры образцов

В соответствии с рассмотренной в статье схемой обработки изготовлены образцы, содержащие на своей поверхности массивы малоразмерных близкорасположенных выступов (рис. 11).

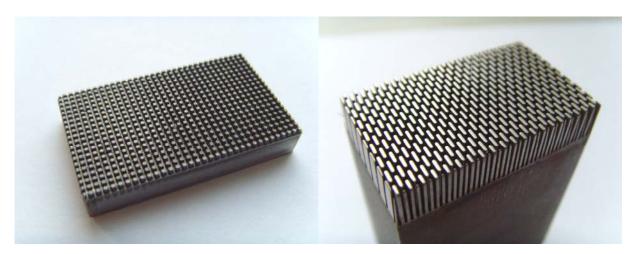


Рис. 11. Образцы с массивами выступов, полученные методом импульсной ЭХО (габаритные размеры обработанной поверхности 20×30 мм²)

В заключении отметим, что совершенствование технологии импульсной ЭХО массивов малоразмерных элементов сложной формы в заготовках из труднообрабатываемых механическими методами материалов позволяет создавать новые перспективные конструкции деталей, которые ранее не могли быть технологически реализованы.

Выводы

- 1) При разработке технологии импульсной ЭХО массивов малоразмерных близкорасположенных выступов при помощи вибрирующего электрода-инструмента в виде ТНПП необходимо учитывать его упругие деформации и омическое сопротивление, характер распределения шероховатости по образующей выступов и гидродинамический режим течения рабочей среды.
- 2) Геометрические размеры ТНПП должны выбираться из условий обеспечения её заданной жёсткости и допуска на высотный размер выступов.
- 3) Минимально достижимый зазор между соседними выступами определяется из условия $dB(h_{u})/dh_{u}=0$. Для отверстий в ТНПП с прямолинейными участками в поперечном сечении:

$$h_{\mathfrak{h}}^{opt} \approx 2.37 \cdot \sqrt[5]{w_0^2 / s_m} ,$$

$$b^{opt} \approx 1.08 \cdot \sqrt[5]{w_0 \cdot s_m^2} .$$

4) Существует такая критическая размерность массива, при которой в центре заготовки выполняется условие $U_{(M/2)(N/2)} < E^*$ и обработать образец будет невозможно. Критическая размерность массива определяется из выражения:

$$N_{\kappa p} = \sqrt{\frac{U - E^*}{U \cdot k}} \,,$$

где k - коэффициент (зависящий от R/r), который определяется расчётным путём по предложенной математической модели.

Библиографический список

- Маннапов А.Р., Зайцев А.Н. Технологические показатели электрохимического формирования вставок щёточных уплотнений //Вестник УГАТУ. – Уфа, 2008. – Т. 11, № 2 (29). – С. 131-138.
- 2) Павилинич С.П., Маннапов А.Р., Гимаев Н.З. и др. Электрохимическое формообразование элементов аэродинамических уплотнений //Известия вузов. Авиационная техника. Казань, 2008. № 3. С. 69-73.
- 3) Григолюк Э.И., Фильштинский Л.А. Перфорированные пластины и оболочки. М: Наука, 1970. 556 с., ил.

Сведения об авторах

Маннапов Альберт Раисович, ГОУ ВПО Уфимский государственный авиационный технический университет, научный сотрудник, кандидат технических наук,

450000, г. Уфа, ул. К. Маркса, 12; тел.: +7-347-272-86-66, e-mail: pecm@mail.ru, сайт: www.pecm.ru

Зайцев Александр Николаевич, ГОУ ВПО Уфимский государственный авиационный технический университет, профессор, доктор технических наук,

450000, г. Уфа, ул. К. Маркса, 12; тел.: +7-347-272-86-66, e-mail: pecm@mail.ru, сайт: www.pecm.ru