УДК 681.513.54:629.7.015

Оптимизация алгоритма доставки полезной нагрузки автоматическим подводным аппаратом

В.В. Малышев, Д.С. Кабанов

Аннотация

В настоящей статье излагается решение задачи доставки полезной нагрузки (ПН) автоматическим подводным аппаратом (АПА) в заданную точку пространства. Формируются оптимальные алгоритмы управления АПА на различных этапах движения. Суть алгоритмов заключается в численном определении управляющих воздействий с помощью принципа максимума при учете ограничений на точность доставки ПН АПА в заданную область и ограничений на управление. Производится оценка точности доставки ПН АПА. Представлены результаты численных расчетов динамики АПА с использованием программно-имитационного комплекса моделирования.

Ключевые слова

автоматический подводный аппарат; принцип максимума; прогнозирующая модель, оценка точности.

Введение

Рассматривается задача доставки полезной нагрузки (ПН) автоматическим подводным аппаратом (АПА) в заданную точку пространства с учётом ограничений на управление и вектор состояния. Отдельные участки траектории оптимизируются с использованием алгоритма коррекции параметров структуры управления. Тестирование разработанного алгоритма осуществляется с использованием программного комплекса моделирования АПА и его подсистем, таких как: системы управления, стабилизации, навигации, модели рулевых

приводов, двигателя и др. На основе метода Монте-Карло получены статистические характеристики, позволяющие сделать вывод относительно точности решения задачи.

Постановка задачи

Особенностью АПА как объекта управления является многорежимность движения. Это хорошо видно на примере доставки ПН АПА из текущего положения в заданную точку (см. рис. 1). Траектория АПА состоит из нескольких характерных участков: выведения (участок 1), прямолинейного маршевого движения (участок 2) и терминального участка высокоточной доставки ПН АПА к заданному объекту мониторинга (участки 3, 4, 5). Терминальный участок движения в рассматриваемом примере содержит этап обхода препятствия (рельефа).

Рис. 1 Схема участков движения АПА

Требуется найти оптимальную траекторию движения АПА, обеспечивающую доставку ПН АПА в заданную точку пространства с выполнением требований по углам подхода в конечный момент времени и обходом препятствия на терминальном участке. Целесообразно оптимизировать участки, за счет которых возможно достичь выигрыша в точности доставки ПН АПА. На основе проведенного анализа выявлено, что такими участками являются: участок выведения и терминальный участок. Кроме того, для определения принципиальной возможности выполнения задачи доставки ПН АПА в заданную точку необходимо построить область достижимости АПА, в зависимости от энергоресурса двигателя.

Алгоритм решения задачи управления АПА представлен на рис. 2.

2

Рис. 2 Алгоритм решения задачи управления АПА

Задача синтеза управления АПА решается на каждом шаге интегрирования модели функционирования аппарата. Для обеспечения наилучшего с точки зрения обозначенных требований решения последовательно решаются несколько оптимизационных задач – это задачи оптимизации траектории движения, поиск области достижимости АПА и задача терминального наведения АПА.

Выбор оптимальной траектории выведения

Для выхода АПА на экономичный режим маршевого движения в направлении заданной точки доставки ПН АПА требуется построить оптимальную траекторию выведения АПА из точки старта с начальной глубины y_0 и курса φ_0 на глубину y_f и курс φ_f с обеспечением равенства нулю угла наклона траектории θ_f в конечный момент времени с помощью управления составляющими вектора перегрузки $\mathbf{n} = (n_x, n_y, n_z)^T$. Накладываются ограничения на компоненты вектора \mathbf{n} – перегрузки n_y , n_z и на угол наклона траектории. Такая формулировка требований к управляемому движению АПА (выбор за управление перегрузки **n**) позволяет удерживать его в эксплуатационной области, которая выбирается условий достижения высокой эффективности обеспечения безопасности ИЗ И

функционирования объекта управления, в том числе выдерживание конструктивных ограничений на прочность АПА. Участок выведения АПА в продольной плоскости с выходом на заданную глубину с учётом ограничений на управление и вектор состояния подробно описан в работе [1]. В настоящей работе рассматривается пространственный маневр с выходом на требуемые глубину и курс.

На уровне формирования оптимальной траектории используется модель движения центра масс АПА [2, 3]:

$$\dot{V} = g(n_x - \sin\theta), \quad \dot{\theta} = \frac{g}{V}(n_y - \cos\theta), \quad \dot{\varphi} = -\frac{g}{V}\frac{n_z}{\cos\theta},$$

$$\dot{x} = V\cos\theta\cos\varphi, \quad \dot{y} = V\sin\theta, \quad \dot{z} = -V\cos\theta\sin\varphi,$$
(1)

где $(V, \theta, \varphi, x, y, z)^T = \mathbf{X}$ – вектор состояния в полускоростной системе координат, θ – угол наклона траектории; φ – угол поворота траектории x, y – продольная дальность и глубина движения АПА соответственно; V – скорость АПА, g – ускорение свободного падения, $n_x = (R - A_x)/(mg)$, $A_x = (c_{x_0} + c_x^{\alpha^2} \alpha^2) qS$, $q = \rho V^2/2$, $\alpha = n_y/n_y^{\alpha}$, $n_y^{\alpha} = c_y^{\alpha} qS$, c_{x_0} , $c_x^{\alpha^2}$, c_y^{α} – гидродинамические коэффициенты, S – характерная площадь (миделя), $|\theta| \le \theta_m$, θ_m – предельное значение угла наклона траектории.

Граничными условиями для траекторной задачи являются: $V(0) = V_0$, $\theta(0) = \theta_0$, $\phi(0) = \phi_0$, $x(0) = x_0$, $y(0) = y_0$, $z(0) = z_0$, $\theta(t_f) = 0$, $\phi(t_f) = \phi_f$, $y(t_f) = y_f$, где V_0 , θ_0 , ϕ_0 , x_0 , y_0 , ϕ_f , y_f – заданные величины; t_f свободно.

Для построения оптимальной траектории выведения минимизируется целевой функционал следующего вида:

$$J_B = F[\mathbf{X}(t_f)] + \int_0^{t_f} Q_{u} dt , \qquad (2)$$

где
$$F[\mathbf{X}(t_f)] = \frac{1}{2} \Delta \mathbf{X}_f^T \mathbf{\rho} \Delta \mathbf{X}_f$$
, $\Delta \mathbf{X}_f = \mathbf{X}(t_f) - \mathbf{X}_f$; $\mathbf{\rho} = diag(0, \rho_\theta, \rho_\varphi, 0, \rho_y, 0)$ – матрица

коэффициентов, значения которых вначале определяются на основе принципа равных вкладов максимальных отклонений [4] с точностью до общего множителя и затем

уточняются в процессе моделирования. Кроме того, $|n_y| \le n_{ym}$, $|n_z| \le n_{zm}$ где n_{ym} , n_{zm} – максимальные значения проекций перегрузки.

Для формального учета ограничений на угол наклона траектории в подынтегральную часть критерия (2) введена штрафная функция вида:

$$Q_{uu} = egin{cases} G\Delta heta^2, & | heta| > heta_m, \ 0, & | heta| \le heta_m, \end{cases}$$

здесь коэффициент $G > 0, \ \Delta \theta = |\theta| - \theta_m$.

Для формирования структуры оптимального управления обратимся к необходимым условиям оптимальности [4, 5, 6]. Запишем гамильтониан

$$H = \psi_V g \left(n_x - \sin \theta \right) + \psi_\theta \frac{g}{V} \left(n_y - \cos \theta \right) - \psi_\varphi \frac{g}{V} \frac{n_z}{\cos \theta} + \psi_x V \cos \theta \cos \varphi + \psi_y V \sin \theta - \psi_z V \cos \theta \sin \varphi + Q_u.$$

где $(\psi_V, \psi_\theta, \psi_\varphi, \psi_x, \psi_y, \psi_z)^T = \Psi$ – вектор сопряженных переменных. В соответствии с принципом максимума сопряженные переменные определяются из уравнения $\dot{\Psi} = -\left(\frac{\partial H}{\partial \mathbf{X}}\right)^T$, или в поэлементном виде:

$$\dot{\psi}_{V} = \psi_{\theta} \frac{g}{V^{2}} \left(n_{y} - \cos \theta \right) - \psi_{\phi} \frac{g}{V^{2}} \frac{n_{z}}{\cos \theta} - \psi_{x} \cos \theta \cos \phi - \psi_{y} \sin \theta + \psi_{z} \cos \theta \sin \phi,$$

$$\dot{\psi}_{\theta} = \psi_{V} g \cos \theta - \psi_{\theta} \frac{g}{V} \sin \theta + \psi_{\phi} \frac{g}{V} \frac{n_{z}}{\cos^{2} \theta} \sin \theta + \psi_{x} V \sin \theta \cos \phi - -\psi_{y} V \cos \theta - \psi_{z} V \sin \theta \sin \phi - \frac{\partial Q_{u}}{\partial \theta},$$

(3)

 $\dot{\psi}_{\varphi} = \psi_x V \cos \theta \sin \varphi + \psi_z V \cos \theta \cos \varphi,$

 $\dot{\psi}_x=0\,,\quad \dot{\psi}_y=0\,,\quad \dot{\psi}_z=0\,,$

$$\frac{\partial Q_{uu}}{\partial \theta} = \begin{cases} 2G\Delta\theta, & |\theta| > \theta_{uu}, \\ 0, & |\theta| \le \theta_{uu}, \end{cases}$$

с граничными условиями $\Psi(t_f) = \left(\frac{\partial F[\mathbf{X}(t_f)]}{\partial x}\right)^T$, а оптимальное управление \mathbf{u}_o определяется из условия $\inf_{u \in [-u_m, u_m]} H(\mathbf{X}, \Psi, \mathbf{u}, t) = H(\mathbf{X}, \Psi, \mathbf{u}_o, t)$ в виде:

$$n_{y} = \begin{cases} -n_{y_{m}} sign(\psi_{\theta_{0}}) & npu \ \theta < \theta_{m}, \\ n_{y\theta} & npu \ \theta = \theta_{m}, \text{ Ha } t \in [\tau_{1}, \tau_{2}], \end{cases}$$

$$n_{z} = \begin{cases} n_{z_{m}} sign(\varphi_{0} - \varphi_{f}), & \text{Ha } t \in [0, \tau_{3}], \\ 0, \end{cases}$$

$$(4)$$

где $(n_y, n_z)^T = \mathbf{u}_0$, n_{y_m} , n_{z_m} – предельные значения соответствующих перегрузок, $\tau_1, \tau_2, \tau_3 \in [0, t_f]$ – моменты времени смены участков структуры управления, ψ_{θ_0} – начальное значение $\psi_{\theta}(0)$, $n_{y\theta} = \cos \theta_m$ – значение перегрузки, обеспечивающее движение АПА с предельным углом наклона траектории θ_m .

Решение задачи по принципу максимума позволяет сформировать структуру управления в соответствии с (4) и граничными условиями

$$n_{y} = -n_{y_{m}} sign(\psi_{\theta_{0}}) + \Delta n_{y_{1}} l(t, \tau_{1}) + \Delta n_{y_{2}} l(t, \tau_{2}),$$
(5)

 $n_z = n_{z_m} sign(\psi_0 - \psi_f) + \Delta n_z l(t, \tau_3),$

где $\psi_{\theta_0} = \psi_{\theta}(0), \ \Delta n_{y_1} = n_{y_m} sign(\psi_{\theta_0}) + n_{y_\theta}, \ \Delta n_{y_2} = -n_{y_\theta} + n_{y_m} sign(\psi_{\theta_0}), \ \Delta n_z = -n_{z_m} sign(\psi_0 - \psi_f),$ a $l(t, \tau_1), \ l(t, \tau_2), \ l(t, \tau_3) - \phi$ ункции вида

$$l(t,t_{1}) = \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg}\left(k\left(t-t_{1}\right)\right),\tag{6}$$

k – коэффициент, при неограниченном возрастании которого функция *l*(*t*,*t*₁) приближается к единичной функции Хэвисайда.

Домножим правые части уравнений исходной системы (1) на функцию $l(t_f, t)$ вида (6), чтобы иметь возможность управлять величиной t_f . Моменты переключения управления τ_1 и τ_2 функции $n_y(t)$, переключение τ_3 функции $n_z(t)$, а также t_f будем рассматривать в качестве компонент обобщенного вектора состояния, а за управления выберем производные от τ_1 , τ_2 , τ_3 , t_f по времени:

$$\dot{\tau}_1 = w_1 l(t_f, t), \quad \dot{\tau}_2 = w_2 l(t_f, t), \quad \dot{\tau}_3 = w_3 l(t_f, t), \quad \dot{t}_f = w_4 l(t_f, t),$$

здесь $(w_1, w_2, w_3, w_4)^T = \mathbf{w}$ – вектор управления во вспомогательной задаче оптимизации. Управление перегрузками n_y и n_z осуществляется косвенно – через вектор управления \mathbf{w} .

В соответствии с алгоритмом с прогнозирующей моделью за критерий оптимальности этой задачи выбирается функционал Красовского [4]

$$J_{B_{1}} = J_{B} + \frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{w}^{T} \mathbf{k}_{w}^{-2} \mathbf{w} dt + \frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{w}_{0}^{T} \mathbf{k}_{w}^{-2} \mathbf{w}_{0} dt, \qquad (7)$$

где $\mathbf{w}_o = (w_{1o}, w_{2o}, w_{3o}, w_{4o})^T$ – оптимальное значение вектора управления \mathbf{w} , $\mathbf{k}_w^2 = diag(k_{w_1}^2, k_{w_2}^2, k_{w_3}^2, k_{w_4}^2)$. Коэффициенты \mathbf{k}_w^2 определяются моделированием при отладке вычислительного алгоритма.

Из необходимых условий оптимальности находим оптимальное управление:

$$w_{1}(t) = -k_{w_{1}}^{2}\psi_{\tau_{1}}(t), \quad w_{2}(t) = -k_{w_{2}}^{2}\psi_{\tau_{2}}(t), \quad w_{3}(t) = -k_{w_{3}}^{2}\psi_{\tau_{3}}(t), \quad w_{4}(t) = -k_{w_{4}}^{2}\psi_{\tau_{f}}(t).$$
(8)

Решение задачи выбора оптимальной траектории АПА строится в соответствии с алгоритмом с прогнозирующей моделью [4]. Для определения управления не требуется решать двухточечную краевую задачу. Вычисления сводятся к двум задачам Коши, решаемым в прямом и обратном времени соответственно. На рис. 3 представлены графики управления $n_y(t)$ и $n_z(t)$ при решении задачи поиска оптимальной траектории выведения с использованием предлагаемого численного метода решения.

Рис. 3 Структура управления $n_y(t)$ и $n_z(t)$

На рис. 4 представлены график $\theta(t)$ и $\varphi(t)$, отчетливо виден выход на предельный угол наклона траектории для первого графика и обеспечение выхода АПА на требуемый угол курса (в приведенном расчете $\theta_m = 30^\circ, \varphi_f = 160^\circ$).

Рис. 4 Графики углов $\theta(t)$ и $\phi(t)$

Построение области достижимости

Перед произведением маневра требуется выяснить, является ли заданная точка достижимой для АПА. В случае положительного ответа продолжается движение по выбранной схеме действия, а в случае недостижимости АПА заданной точки принимается решение на смену схемы действий АПА, вплоть до возврата в точку старта или экстренного всплытия. Задача построения области достижимости (ОД) для оценки возможности доставки ПН АПА в требуемую точку пространства за заданное время решается также с использованием алгоритма коррекции параметров структуры управления [7]. Рассмотрим решение задачи для продольной плоскости, решение в горизонтальной плоскости строится аналогично.

Для решения этой подзадачи требуется найти такую программу изменения нормальной перегрузки $n_y(t)$, которая обеспечит перевод АПА в вертикальной плоскости из начального положения за время t_f в максимально удаленное положение от точки старта в выбранном направлении движения – единичного вектора *b*, заданного углом наклона ξ относительно стартовой системы координат. Критерий выбирается в виде [8, 9]

$$J_{OII} = F[\mathbf{X}(t_f)] = -\mathbf{b}^T \mathbf{X}(t_f) = -x(t_f) \cos \xi - y(t_f) \sin \xi, \qquad (9)$$

где $\mathbf{b}^T = [0, \cos \xi, \sin \xi]$ – единичный вектор, ξ – угол между вектором **b** и осью *OX*.

Решение осуществляется по аналогичной схеме, приведенной выше для решения задачи выведения АПА на требуемую глубину и курс.

Структура управления определяется аналогично (4), только место $n_{y\theta}$ занимает $n_{yOC} = \cos \xi$. Тогда динамика объекта управления будет представлена совокупностью уравнений:

$$\dot{\theta} = \frac{g}{V} \Big(-n_{y_m} sign\left(\psi_{\theta_0}\right) + \Delta n_{y_1} l\left(t, \tau_1\right) + \Delta n_{y_2} l\left(t, \tau_2\right) - \cos\theta \Big),$$

$$\dot{x} = V \cos\theta , \quad \dot{y} = V \sin\theta , \quad \dot{\tau}_1 = w_1, \quad \dot{\tau}_2 = w_2.$$
(10)

На рис. 5 представлены графики зависимостей τ_1 и τ_2 от времени. На графиках хорошо видно, что момент переключения τ_1 сходится к оптимальному значению, а τ_2 стремится к t_f , траектория как бы растягивается в прямую линию в целях достижения максимальной дальности. Из представленных рисунков видно, что фактически имеется только одно переключение τ_1 , что подтверждается физической сутью задачи.

Рис. 5 Графики управления моментами переключения $\tau_1(t)$ и $\tau_2(t)$

Стоит отметить, что объем вычислений для данной подзадачи является незначительным, что позволяет производить построение границы ОД в процессе движения.

Терминальное наведение (построение попадающих траекторий)

На конечном участке движения необходимо выполнить требования по точности доставки ПН АПА в заданную точку с обходом препятствий (рельефа) и обеспечением требуемого угла подхода к заданной точке. Для этого решается задача построения оптимальной траектории перевода АПА из текущей точки движения в заданную точку пространства с обходом препятствий и учетом ограничений на угол подхода θ_f и φ_f .

Рассмотрим уравнения движения АПА в вертикальной плоскости (1), записанные через кривизну траектории *К*

$$\hat{\theta} = V \cdot K,$$

$$\dot{x} = V \cos \theta,$$

$$\dot{y} = V \sin \theta,$$

$$\dot{K} = u,$$
(11)

где $(\theta, x, y, K)^T = \mathbf{X}$ – вектор состояния; θ – угол наклона траектории; x, y – линейные координаты центра масс АПА в вертикальной плоскости; $K = \frac{g}{V^2}(n_y - \cos\theta)$; u – управление. Введение обозначения K оказалось удобным, т.к. для расчета попадающих траекторий в боковой плоскости достаточно выбрать в уравнении (1) кривизну траектории в виде $K = -\frac{g}{V^2}n_z$, такой подход упростил реализацию алгоритма в программном комплексе.

На правом конце обновляемой траектории требуется выполнение следующих условий [10]:

$$x(t_f) = x_f, \quad y(t_f) = y_f, \quad \theta(t_f) = \theta_f, \quad \varphi(t_f) = \varphi_f,$$

где $x(t_f)$, $y(t_f)$ – продольная координата и глубина АПА в терминальный момент времени; $\theta(t_f)$, $\varphi(t_f)$ – углы наклона и поворота траектории в терминальный момент времени; $(x_f, y_f)^T = \mathbf{X}_m$, θ_f и φ_f – координаты и требуемые углы подхода к точке доставки ПН АПА. Построение попадающей траектории осуществляется для текущей оценки местоположения АПА таким образом, чтобы в терминальный момент времени были выполнены все перечисленные выше ограничения по условию подхода к терминальной точке.

В задаче рассмотрены следующие сценарии изменения терминальной траектории, обусловленные получением новых данных о препятствиях и точке доставки ПН АПА, на основе информации датчиков внешней обстановки, таких, например, как гидроакустическая система (ГАС):

- 1) обход препятствия, представляющего собой сектор заданной формы;
- 2) изменение параметров препятствия;
- 3) изменение положения заданной точки доставки ПН АПА;
- 4) изменение требуемого угла подхода к заданной точке.

Решение задачи наведения при наличии перечисленных выше участков траектории осуществляется путем минимизации целевого функционала вида

;

$$\begin{split} J &= M\{F^{(q)}[\mathbf{X}(t_f), t_f, \overline{t}^{(q)}] + \sum_{s=1}^{q} \int_{t_0}^{t_f} f_0^{(s)}(\mathbf{X}, u^{(s)}, t, \overline{t}^{(q)}) dt\}\\ \overline{t}^{(q)} &= col\left(t^{(1)}, \dots, t^{(q)}\right), \ t^{(s)} \in [t_a^{(s)}, t_b^{(s)}], \end{split}$$

здесь q = 4 – число участков управления на терминальном этапе движения; $t^{(s)}$ – момент времени начала участка управления с номером S; $t_a^{(s)}$, $t_b^{(s)}$ – границы интервала времени, в котором происходит смена участков управления; надстрочным индексом S отмечена и подынтегральная функция f_0 , используемая на соответствующем участке движения

$$f_0^{(s)}(\mathbf{X}, u^{(s)}, t, \overline{t}^{(q)}) = \frac{1}{2} (u^2 + u_o^2) \cdot k^{-2} + Q_w^s$$
. Здесь $u = \dot{K}, u_o$ – оптимальное значение u, Q_w^s –

функция штрафа, непрерывная на всем интервале оптимизации.

Функция штрафа Q^{s}_{uu} определяется в зависимости от границ рельефа по формулам

$$Q_{uu}^{S}(X,t) = \begin{cases} 0, & x_{f} - x > R_{1} \quad u \pi u \quad x_{f} - x < L_{2}, \\ 0, & j_{s} y > j_{s} y_{s} \\ \rho(y - y_{s})^{2}, & j_{s} y \leq j_{s} y_{s} \quad u \quad L_{2} < x_{f} - x < R_{1} \end{cases}$$
$$y_{s} = \begin{cases} -j_{s} a_{s} (x - x_{f}), & L_{2} < x_{f} - x < L_{1}, \\ j_{s} \sqrt{R_{1}^{2} - (x - x_{f})^{2}}, & L_{1} < x_{f} - x < R_{1}, \end{cases}$$

где L_1 , L_2 , R_1 , y_s , a_s , j_s – параметры формы препятствия, представленные на рис. 6.

Рис. 6 Параметры модели препятствия

Обход препятствий (рельефа) производится посредством задания соответствующего параметра в критерии качества. Так при $\theta = 0$ реализуется движение по прямой линии к точке доставки ПН АПА: K = 0. При получении данных от ГАС о наличии препятствия АПА переходит в режим оптимального управления с обеспечением заданных терминальных условий с обходом рельефа (по получении сигнала D_s). На этом этапе алгоритм управления должен обеспечить требуемую точность при возможном уточнении положения заданной точки доставки (x_f , y_f) и углов подхода θ_f – по получении сигналов D_{xy} и D_{θ_f} соответственно. При наличии сигнала об изменении параметра θ_f в критерии заменяется θ_f на новое значение θ_{f1} . При наличии сигнала об изменении координат x_f , y_f заданной точки доставки ПН АПА в терминальной части критерия производится замена x_f , y_f на x_{f1} , y_{f1} соответственно.

Входящие в уравнения для сопряженных переменных частные производные функции штрафа $Q^s_{\mu\nu}$ по *x* и *y* имеют вид:

$$\frac{\partial Q_{u}^{s}}{\partial x} = \begin{cases} 0, & x_{f} - x > R_{1} \ u \ x_{f} - x < L_{2} \\ 0, & j_{s} y > j_{s} y_{s} \ u \ L_{2} < x_{f} - x < R_{1} \\ 2a_{s} j_{s} \rho (y - y_{s}), & j_{s} y \le j_{s} y_{s} \ u \ L_{2} < x_{f} - x < L_{1} \\ \frac{2j_{s} \rho (y - y_{s})(x - x_{f})}{\sqrt{R_{1}^{2} - (x - x_{f})^{2}}}, \ j_{s} y \le j_{s} y_{s} \ u \ L_{1} < x_{f} - x < R_{1} \end{cases}$$

$$\frac{\partial Q_{u}^{s}}{\partial y} = \begin{cases} 0, & x_{f} - x > R_{1} & u & x_{f} - x < L_{2} \\ 0, & j_{s} y > j_{s} y_{s} & npu \ L_{2} < x_{f} - x < R_{1} \\ 2\rho \left(y - y_{s} \right), & j_{s} y \leq j_{s} y_{s} & npu \ L_{2} < x_{f} - x < R_{1} \end{cases}$$
$$\frac{\partial Q_{u}^{s}}{\partial x} = \frac{\partial Q_{u}^{s}}{\partial y_{s}} \frac{\partial y_{s}}{\partial x}.$$

Задача синтеза оптимальной траектории на терминальном участке с обходом препятствия рассмотренного вида решается с использованием алгоритма с прогнозирующей моделью. Управление АПА после обхода препятствия строится с использованием алгоритма с коррекцией параметров структуры управления, имеющей вид аналогичный структуре (5):

$$K = -K_m sign(\psi_K) + \Delta K_1 l(t, \tau_1) + \Delta K_2 l(t, \tau_2),$$

где $\Delta K_1 = K_m sign(\psi_K) + K_{oc}$, $\Delta K_2 = -K_{oc} + K_m sign(\psi_K)$, $K_{oc} = 0$, K_m – максимально возможная кривизна траектории, $n_{y_{oc}}$ определяется из условия, а $l(t, \tau_1)$, $l(t, \tau_2)$ – функции вида (6).

Рис. 7 Траектория обхода препятствия

Задача синтеза оптимального управления

Задача синтеза оптимального управления АПА решается следующим образом. Данные о текущем векторе состояния АПА снимаются на каждом шаге. Полученные с использованием представленных алгоритмов оптимизации требуемые значения углов θ и ϕ подаются на вход ПИД-регулятора, который обеспечивает решение задачи стабилизации АПА на оптимальной траектории в двух каналах управления (продольном и боковом). При этом данные о текущем векторе состояния АПА снимаются на каждом шаге, а движение АПА описывается подробной математической моделью (12). В этих уравнениях управляющие воздействия в виде отклонения горизонтальных и вертикальных рулей входит в выражения для проекций сил и моментов. Значения этих отклонений определялись с использованием ПИД-регулятора, формирующего значения из условия обеспечения стремления составляющих перегрузки $n_y(t)$ и $n_z(t)$ АПА к значениям, полученным в результате решения траекторной задачи программирования оптимального управления. Иными словами изложенные алгоритмы оптимизации выдают требуемые значения угловой ориентации АПА в каждый момент времени.

Динамика АПА в воде как твердого тела описывается следующей системой уравнений [11, 12]

$$\begin{cases} \dot{x}_{e} = V_{x} \cos \vartheta \cos \psi - V_{y} \sin \vartheta \cos \psi \cos \gamma + V_{z} \cos \vartheta \sin \psi, \\ \dot{y}_{e} = V_{x} \sin \vartheta + V_{y} \cos \vartheta \cos \gamma - V_{z} \sin \gamma \cos \vartheta, \\ \dot{z}_{e} = -V_{x} \sin \psi \cos \gamma + V_{y} \sin \psi \cos \gamma + V_{z} \cos \psi \cos \gamma, \\ \dot{V}_{x} = \frac{1}{m} \left[F_{x} - p \sin \vartheta - (m + \lambda_{22}) (V_{z} \omega_{y} - V_{y} \omega_{z}) + \lambda_{26} (\omega_{y}^{2} + \omega_{z}^{2}) \right], \\ \dot{V}_{y} = \frac{1}{(I_{z} + \lambda_{66})(m + \lambda_{22}) - \lambda_{26}^{2}} \left\{ (I_{z} + \lambda_{66}) [F_{y} - p \cos \vartheta \cos \gamma - mV_{x} \omega_{z} + (m + \lambda_{22}) V_{z} \omega_{x} - \lambda_{26} \omega_{x} \omega_{y}] - \lambda_{26} \left[M_{z} + Ax_{A} \cos \vartheta \cos \gamma - (I_{y} + \lambda_{66}) \omega_{x} \omega_{y} - \lambda_{26} (V_{x} \omega_{z} - V_{z} \omega_{x}) \right] \right\}, \\ \dot{V}_{z} = \frac{1}{(I_{y} + \lambda_{66})(m + \lambda_{22}) - \lambda_{26}^{2}} \left\{ (I_{y} + \lambda_{66}) [F_{z} + p \cos \vartheta \sin \gamma - (m + \lambda_{22}) V_{y} \omega_{x} + mV_{x} \omega_{y} - \lambda_{26} \omega_{x} \omega_{z} \right] + \lambda_{26} [M_{y} - (m + \lambda_{22}) V_{y} \omega_{x} + mV_{x} \omega_{y} - \lambda_{26} \omega_{x} \omega_{z} - \lambda_{26} (V_{x} \omega_{y} - V_{y} \omega_{x}) \right] \right\}, \\ \dot{\omega}_{x} = \frac{M_{x}}{I_{x}}, \\ \dot{\omega}_{y} = \frac{1}{(I_{y} + \lambda_{66})(m + \lambda_{22}) - \lambda_{26}^{2}} \left\{ (m + \lambda_{22}) [M_{y} - Ax_{A} \cos \vartheta \sin \gamma + (I_{z} + \lambda_{66}) \omega_{x} \omega_{z} - \lambda_{26} (V_{x} \omega_{y} - V_{y} \omega_{x}) \right] + \lambda_{26} [F_{z} + p \cos \vartheta \sin \gamma - (m + \lambda_{22}) V_{y} \omega_{x} + mV_{x} \omega_{y} - \lambda_{26} \omega_{x} \omega_{z} \right] \right\}, \\ \dot{\omega}_{z} = \frac{1}{(I_{z} + \lambda_{66})(m + \lambda_{22}) - \lambda_{26}^{2}} \left\{ (m + \lambda_{22}) [M_{y} - Ax_{A} \cos \vartheta \sin \gamma + (m + \lambda_{22}) V_{y} \omega_{x} - mV_{x} \omega_{y} - \lambda_{26} \omega_{x} \omega_{z} \right] \right\},$$

где $(V_x, V_y, V_z)^T = \mathbf{V}$ – вектор скорости АПА, $(\omega_x, \omega_y, \omega_z)^T = \mathbf{\omega}$ – вектор угловой скорости АПА, $(F_x, F_y, F_z)^T = \mathbf{F}$ – вектор сил, действующих на АПА на связные оси координат (за исключением сил тяжести и Архимеда), A – сила Архимеда, p – отрицательная плавучесть, т.е. разница сил веса и Архимеда, $(M_x, M_y, M_z)^T = \mathbf{M}$ – вектор моментов сил, I_x, I_y, I_z – моменты инерции, m – масса, $\lambda_{22}, \lambda_{26}, \lambda_{66}$ – присоединенные массы и моменты; x_A – расстояние от центра масс до центра водоизмещения АПА; x_c, y_c, z_c – координаты АПА в стартовой системе координат, ϑ, ψ, γ – углы дифферента, рыскания и крена.

К уравнениям (12) добавляются кинематические уравнения вращательного движения
$$\begin{cases}
\frac{d\mathcal{G}}{dt} = \omega_y \sin \gamma + \omega_z \cos \gamma, \\
\frac{d\psi}{dt} = \frac{1}{\cos \theta} \left(\omega_y \cos \gamma - \omega_z \sin \gamma \right), \\
\frac{d\gamma}{dt} = \omega_x - tg\theta \left(\omega_y \cos \gamma - \omega_z \sin \gamma \right).
\end{cases}$$
(13)

Углы атаки и скольжения находятся из равенств $\alpha = -\arctan \frac{V_y}{V_x}$, $\beta = \arcsin \frac{V_z}{V}$.

Моделирование

Для проверки работоспособности предлагаемых оптимальных алгоритмов проведена оценки точности доставки ПН АПА с использованием программно-имитационного комплекса, позволяющего моделировать процесс управляемого движения АПА, работу бортовых систем управления, стабилизации, навигации и других подсистем.

Расчеты показали, что инерционность АПА существенно сказывается на отслеживании заданной оптимальной траектории. Разработанный алгоритм формирования программ управления $n_y(t)$ и $n_z(t)$ не связан с большим объемом вычислений. Поэтому он может применяться для обновления этой программы в текущий момент времени. В этом случае его можно рассматривать как алгоритм синтеза управления $n_y(\mathbf{X},t)$, $n_z(\mathbf{X},t)$.

Анализ точности решения АПА целевой задачи осуществлялся при следующих случайных факторах: ошибки измерения начального положения заданной точки доставки ПН (пеленг, дальность, глубина), ошибки гидроакустической системы АПА (горизонтальный и вертикальный пеленги, дальность), время обновления информации о заданной точке доставки ПН для формирования команды на смену сценария на терминальном участке движения.

Статистическое моделирование проводилось методом Монте-Карло (по 100 реализаций для каждого сценария применения). Один из вариантов расчетов производился при следующих начальных условиях:

- 1) начальное положение АПА: $\theta_0 = 0$, $\varphi_0 = 0$, $x_0 = 0$, $y_0 = -100$ м, $z_0 = 0$;
- положение точки доставки ПН АПА разыгрывалось в соответствии с равномерным законом распределения из заданных диапазонов значений;
- ошибки измерения начального положения заданной точки разыгрывались в соответствии с нормальным законом распределения;

- дистанции, на которых происходит изменение одного из четырех сценариев движения АПА на терминальном участке, а также параметры этих сценариев разыгрывались равновероятно из заданного диапазона;
- ошибки измерения гидроакустической системы АПА разыгрывались в соответствии с нормальным законом распределения;
- ошибки бесплатформенной инерциальной навигационной системы АПА по угловым скоростями, крену и дифференту разыгрывались в соответствии с нормальным законом распределения из заданных диапазонов [13].

Получены оценки точности применения АПА в виде рассеивания точек доставки ПН АПА, спроецированные на вертикальную (OYZ) и горизонтальную (OXZ) картинные плоскости, результаты представлены на рис.8. На представленном рисунке круг отображает требуемую область доставки ПН АПА, а точками отображены реализации промаха доставки ПН АПА. Для данного примера (расчет № 1) СКО в определении горизонтального и вертикального пеленгов ГАС АПА составляет 0,5°.

Рис. 8 Область рассеивания реализаций промаха (расчет № 1)

Оценка математического ожидания (МО) промаха составила 5,53 м, а оценка СКО 1.14 м. Оценка вероятности доставки ПН АПА в область, ограниченную шаром с радиусом 10 м равна 1.

При увеличении СКО в определении горизонтального и вертикального пеленгов ГАС АПА до 1° (расчет №2), происходит ухудшение статистических характеристик – оценка МО составила 5.95 м, а оценка СКО 1.75 м (рис. 9). Оценка вероятности доставки ПН АПА в область, ограниченную шаром с радиусом 10 м составляет 0.98.

Рис. 9 Область рассеивания реализаций промаха (расчет № 2)

Для представленных расчетов осуществлялся обход препятствий с обозначенными характеристиками. Приведенные графики позволяют говорить о работоспособности представленных оптимальных алгоритмов, позволяющих осуществлять доставку ПН АПА в заданную область пространства с заданной точностью.

Заключение

- 1. Разработаны алгоритмы управления движением АПА с коррекцией параметров структуры управления для участков выведения и терминального движения. Алгоритмы позволяют формировать оптимальную траекторию в темпе движения АПА, принимать решение относительно достижимости заданной точки доставки ПН и обходить препятствия.
- Произведена оценка точности доставки ПН АПА в заданную точку пространства с использованием программного комплекса математического моделирования. Результаты расчетов подтверждают работоспособность разработанных оптимальных алгоритмов.

Библиографический список

1. Малышев В.В. Кабанов Д.С. Оптимальное выведение на глубину автоматического подводного аппарата с коррекцией параметров структуры управления // Вестник МАИ. 2012. Т. 19. № 3. С. 88-96.

- Лебедев А.А., Чернобровкин Л.С. Динамика полета беспилотных летательных аппаратов. Учебное пособие для вузов. Изд. 2-е переработанное и доп. М.: «Машиностроение», 1973. 616 с.
- 3. Горбатенко С.А., Макашов Э.М., Полушкин Ю.Ф., Шефтель Л.В. Расчет и анализ движения летательных аппаратов. Инж. справочник. М.: Машиностроение, 1971. 352 с.
- 4. Справочник по теории автоматического управления / Под ред. А.А. Красовского. М.: Наука, 1987. 712с.
- 5. Малышев В.В. Методы оптимизации в задачах системного анализа и управления: Учебное пособие. М.: Изд-во МАИ-ПРИНТ, 2010. 440 с.
- 6. Буков В.Н. Адаптивные прогнозирующие системы управления полетом. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 232 с.
- Малышев В.В. Кабанов Д.С. Построение области достижимости с использованием алгоритма коррекции параметров структуры управления // Тезисы докладов 16 международная конференция "Системный анализ, управление и навигация". – М.:Изд-во МАИ-ПРИНТ, 2011, с. 66-67.
- Черноусько Ф.Л. Оценивание фазового состояния динамических систем. Метод эллипсоидов. М.: Наука, 1988, 319 с.
- 9. Толпегин О.А. Области достижимости летательных аппаратов. СПб.: БГТУ, 2002. 106 с.
- Красильщиков М.Н., Сыпало К.И. Самонаведение высокоскоростного беспилотного летательного аппарата на терминальном участке полета в атмосфере // Известия РАН. Теория и системы управления, № 6, 2011.
- Грумондз В.Т., Яковлев Г.А. Алгоритмы аэрогидробаллистического проектирования. М.: Изд-во МАИ, 1994. – 304 с.
- 12. Агеев М.Д., Касаткин Б.А., Киселев Л.В. и др. Автоматические подводные аппараты. Л.: Судостроение, 1981. 224 с.
- 13. Киселев Л.В. Код глубины. Владивосток: Дальнаука, 2011. 332 с.

Сведения об авторах

Малышев Вениамин Васильевич, заведующий кафедрой Московского авиационного института (национального исследовательского университета), профессор д.т.н.

МАИ, Волоколамское ш., 4, Москва, А-80, ГСП-3, 125993;

тел. +7 (499) 158-43-55.

Кабанов Дмитрий Сергеевич, аспирант Московского авиационного института (национального исследовательского университета)

МАИ, Волоколамское ш., 4, Москва, А-80, ГСП-3, 125993;

тел. +7 (916) 932-52-41, e-mail: kabanovds@mail.ru.