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Design of formation and appropriate coordinate expression along 

general elliptic orbit using regularization 

R. Funase and J. Kawaguchi 

Abstract 

This paper deals with how the formation flight target is expressed as trivial and fixed in 

some appropriate coordinates, instead of an orbital target. This fixed bin/slot property is essential 

for the formation maintenance control. A new coordinate transformation is introduced for the case 

of circular reference trajectory, and compared with conventional C-W coordinate, the advantage of 

the new coordinate transformation is shown in terms of control performance index and formation 

maintenance property. Then, the discussion is extended to the case of general elliptic reference 

orbit, where regularization and Levi-Civita non-linear coordinate transform is introduced as a 

formation design methodology. Pseudo-constant distance formation around elliptic orbit is designed 

as an example and the effectiveness of the proposed method is numerically verified. 

 

 

 

1. Introduction 

The formation flying along circular trajectories has been well developed and also well 

known, and a lot of investigations have been carried out. The most familiar approach to the 

dynamics is to use so called the Hill’s equation or, in other words, the C-W equation, in which the 

linearized motion is described as a set of ordinary differential equations with constant coefficients. 

Its in-plane motion is expressed as: 

 22 3 ,     2x ny n x u y nx v      (1) 

As long as the initial-value problem is concerned, the transient behavior is explicitly written 

and the asymptotic stability is easily verified in this approach, when a conventional feedback 

scheme with steady constant gains is introduced in the Hill’s coordinate domain. However, in the 

actual formation control applications, the target to be traced and maintained is persistently moving 

along with time. The equations of motion associated with circular trajectories naturally contain the 

0-th order derivative term, and maintaining the formation inevitably, in most cases, requires a 

certain feedforward acceleration control to be input. It is true that the residual error vanishes once 
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the feed-forward control strategy is incorporated. However, even though the stability is assured with 

no residual error, there are still some aspects to be examined for practical use.  

This paper first discusses the appropriate coordinate expression for different kind of 

formation flying missions, where a formation around circular orbit is assumed and three different 

coordinates are presented and evaluated; 1) C-W coordinate, 2) Inertial coordinate and 3) p-

coordinate that is newly introduced, and the p-coordinate is shown effective for a formation where 

each spacecraft is moving on a locus in the C-W coordinate. Then, the discussion is extended to the 

formation around general elliptic orbit. The design of formation is not so simple as for the case of 

circular trajectory. Here, the technique of regularization and some coordinate transformation is 

introduced to enable comprehensive formation design around elliptic orbit. As an example, a 

constant distance formation is derived by using the transformation. 

 

2. Coordinates for formation expression 

The C-W equation (eq.(1)) is converted to an alternative expression corresponding to the 

inertial motion, and the following equation: 

 ( )q F q U   (2) 

is obtained, where 
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and  is true-anomaly of the reference spacecraft. It is a time-varying system with a periodic 

coefficient matrix F in it. It is not straightforward to verify if the feedback control is stable, and the 

closed system may result in steady state bias unless an appropriate feed-forward control is 

introduced, since it contains the 0-th order derivative term. But the use of this inertial coordinate is 

objectively suitable for some applications such as astronomy missions, which require the control 

performance property defined in inertial space. 

There is still another aspect in the formation flying. What the formation target should be 

depends on the control objective, and it might be worthy referring to the special case, in which the 

formation motion is expressed by the following time-varying equation, in which no 0-th order 

derivative term appears. We call the new expression “p-coordinate.”  

When a contraction of ' ,   ' / 2x x y y   is used, and the rotation coordinate transformation 

of 
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is introduced (see Fig. 1), the equations of motion is altered to the following time-varying 

expression. 
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where 
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It is clear that a trivial solution, a constant vector always satisfies the equation above. This 

corresponds to the state in which the formation is frozen along similar ellipse trajectories, i.e. like 

cart wheel orbits. 

Here p-vector denotes the transformed state vectors along 

a circular trajectory. An importance of the form above is in the 

direct / trivial provision of the steady state solution that satisfies 

them automatically. At the cost of non-autonomy, the modified 

equations here show some advantages especially for the 

formation maintenance guidance and control, without relying on 

the feed-forward efforts. The formation maintenance has only to 

result in controlling the spacecraft position into a virtual bin or 

slot defined in this p-coordinate. The relative approach trajectory 

is handled much more easily with the equations, whose transition 

matrix is also depicted in the paper.  

As seen in this formation flight, here, no feed forward acceleration input is required 

apparently to maintain the formation. The paper presents the stability criterion and other properties 

for the feedback control scheme to this case. The discussion, at the same time, presents the 

convergence property to the target, either a bin or a slot to which each spacecraft shall be 

controlled. Note regardless of selection of coordinates, the dynamics itself never changes and what 

is seen and observed is just apparent behavior with artificial control input. 

 

3. Merit of conversion to non-autonomous system 

In this section, the merit of the introduction of non-autonomous expression (inertial and p-

coordinates) by comparing with the autonomous expression (CW coordinate). 

This section simply points out that the use of the C-W equation may degrade the 

convergence performance in the applications that intend the relative geometry to be pointed to the 
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inertial target, simply because the C-W equation is not necessarily suitable for that purpose. This 

degradation is accounted for either from the performance index point of view that directionally 

weights the formation accuracy, or from the altered dynamics structural point of view. Needless to 

say, the stability needs to be looked at from the time-varying motion’s point of view. 

Fig. 2 is a diagram which shows the relation between the C-W dynamics domain and the 

time-varying formation domain. What is usually discussed is inside the dotted block, the C-W 

dynamics, in which the stability is examined easily. However, the formation of concern is 

associated with the time-varying property that is modulated not only periodically but sometimes in 

terms of size and scale. This thing corresponds to the formation maintenance allowance that is 

directionally different. For instance, the focal length / longitudinal tolerance is much more vigorous 

than lateral control tolerance. How the controller performance is affected is examined in this 

section. Designing the controller has to take this characteristic into account, and might result in the 

time-varying feed-back strategy for better performance, such as based on the periodic Riccati matrix 

solution in time-varying Linear Quadratic problem. 

 

3.1 Stability and controller stability of non-autonomous system 

Provided an autonomous system describing the formation motion is given as 

 x Ax Bu   (7) 

when time-varying and projection mapping transformation of   

 1ˆ ˆ( ) ,      ( )Tx t Px x P t x    (8) 

is introduced, an altered system is described by the following non-autonomous system. 

   1 ˆ ˆˆ ˆ ˆ( ) ( )Tx PAP x PBu A t x B t u        (9) 

With the control input combining both Feed-Forward and Feedback Laws of 

  * *ˆ ˆ( ) ( )u u K t x x t    (10) 

 
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Fig. 2: Control System Transfer Function Characteristics 
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where u*satisfies 

 * * *ˆ ˆˆ ˆ( ) ( ) ( ) ( )x t A t x t B t u   (11) 

the state error 
*ˆ ˆ ˆ( )x x x t     behaves according to 

  ˆ ˆˆ ˆ( ) ( ) ( )x A t B t K t x     (12) 

If the stability above converging to the origin is verified in some manner, there is no steady 

state residual. It should benoted that this is not straight-forward in Non-Autonomous systems. 

Here are summarized typical characteristics in using three coordinates: 

(1) Hill’s Coordinate 

Sability is verified through conventional eigen values. Solutions are available analytically . 

(2) Inertia Coordinate 

Stability is verified via examining Lyapnov property. Solutions are available analytically. 

 ( ) , ( ( ))q F q U U cq K F q      　 　                                                     (13) 

(3) p-Coordinate: 

Stability is verified via examining Lyapnov property. Solutions are available analytically. 

 
ˆ( ) ,p A p U U cp Kp    　 　        (14) 

The control laws shown above are some examples. 

 

3.2 How non-autonomous description works 

There is no direct distinction among three coordinates, since the dynamics never changes, 

and the stability and avoiding steady state residual are feasibly assured for each description. 

However, the paper dares to present two aspects on how such non-autonomous description works. 

What follows lists the subsequent major topics elaborated. 

1. Distinction is depicted between C-W and inertial coordinates in terms of performance index 

associated with the control laws. Discussion also looks at the attitude control aspect, in which 

control thrust had better be applied along inertial axes. 

2. Distinction is shown for p-Coordinate, when the formation maintenance is intended with no 

Feed-Forward acceleration.  

 

Controller performance distinction 

Assuming an appropriate Feed-Forward compensation is properly applied, and provided an 

autonomous system is given as 

 x Ax Bu   (15) 
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With the rotation transformation of  ˆ ˆ( ) ,      ( )Tx t x x t x  , the following non-

autonomous system is obtained. 

    ˆ ˆˆ ˆ ˆ( ) ( )Tx A x Bu A t x B t u        (16) 

Here is assumed the Performance Index (criterion) written as a function of linear quadratic 

products as 

 
0

1 1ˆˆ ˆ ˆ
2 2

T TJ x Qx u Ru
 

  
 

  (17) 

to have a feed-back law taking the form of ˆ ˆu Kx  . This is the most straightforward controller 

design contemporarily taken. Below are summarized how the performance is evaluated under the 

feedback law adopted. 

Case-1: Use of Non-Autonomous Dynamics with Steady LQ Criterion  

Under the Non-Autonomous system of 

    ˆ ˆˆ ˆ ˆ( ) ( )Tx A x Bu A t x B t u        (18) 

with the Performance Index (criterion): 

 
0

1 1ˆˆ ˆ ˆ
2 2

T TJ x Qx u Ru
 

  
 

  (19) 

to have a Feed-Back law of ˆ ˆu Kx  . 

Case-2: Use of Autonomous Dynamics with Time-Varying LQ Weighting  

Under the Autonomous system: 

 x Ax Bu    

with the Performance Index (criterion): 

  
0

1 1ˆˆ ( ) ( )
2 2

T T TJ x t Q t x u Ru
 

    
 

  (20) 

to have a Feed-Back law of ˆ ( )u K t x   . 

It should be noted that two alternative interpretations above are basically identical, but that 

these will provide useful properties that can identify the difference in controllers performance 

between C-W and Inertial coordinates. 

Case-1: Transfer Function Distinction 

Suppose A  is an eigen value of matrix A, and also suppose C  is an eigen value of matrix 

C that is assumed diagonalized to C  by orthogonal transform Q as T

CC Q Q  . 
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When a matrix (A+C) has an eigen value as  A C x x  , since    T

CQ AQ x x   , 

    CA Qx Qx    results. And this implies A C    . 

It should be noted that in the system
   ˆ ˆˆ ˆ ˆ( ) ( )Tx A x Bu A t x B t u      

, 
 

 has the 

eigen values of pure imaginary and is diagonalized by orthogonal transformation. Thus the transfer 

function 
 

1
( ) 1G s s A B


 

 shifts its poles of the transfer function 
 

1
ˆ ˆ( ) 1G s s A B



 
 in C-W 

coordinate to higher frequency direction. This causes the performance index distinction between C-

W and Inertial coordinates. 

Case-2 : Performance Index Evaluation 

Here is evaluated the performance under the following index, for the controller designed in 

autonomous (C-W) coordinate. 

 0 0 0
0

1 1 1 ˆˆ ( ) ( ) ( ) ( ), ( ) ( ) ( )
2 2 2

T T T TJ x Q t x u Ru x t S t x t Q t t Q t
 

      
 

 　 　  (21) 

The performance index is obtained by solving the following equation with a pre-determined 

gain K(t): 

    ( ) ( ) ( ) ( ) ( ), ( ) 0
T TS A BK t S S A BK t K t RK t Q t S        　 　  (22) 

While the gain K0 is designed in C-W coordinate based on 

    0 0 0 0 0 0 0 00
T TS A BK S S A BK K RK Q          1

0 0

TK R B S  (23) 

the evaluation results in solving 

    0 0 0 0 ( ), ( ) 0
T TS A BK S S A BK K RK Q t S        　 　  (24) 

And the performance difference is obtained by  

           0 0 0 0 0 0( )
T

S S A BK S S S S A BK Q t Q           (25) 

In case the last term in the equation above is positive definite, the performance difference is 

positive and this means the performance is degrade. The astronomy pointing performance is defined 

in Inertial Coordinate, and it is obviously directional, and is not described as a constant weighting in 

C-W coordinate. Thus designing in Inertial Coordinate must be better for the astronomy purpose. 

Note, in case a Time-Varying weighting is introduced in C-W coordinate, the design results 

in the same performance and the same gain. But such design process is identical to design in Inertial 

Coordinate. 
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Formation maintenance property 

Fig. 3 shows a schematic drawing of three coordinates to be discussed. The control schemes 

for the formation maintenance rely on the observation measurements with the other spacecraft 

among the formation. Sometimes, Hill’s equations are utilized to describe the relative motion. But it 

is not directly related to the formation geometry. In most cases, the spacecraft attitude regardless of 

whether it is a chaser or evader, what is readily available does not appear intimately as long as C-W 

description is used. The relative motion seen in the inertial coordinate is not simple but complicated 

as in the figure. On the Hill’s coordinate, such closed loci relative motions are along virtual ellipses, 

and the motion is simple enough. However, what is readily available aboard the spacecraft shows 

almost frozen geometry, while the motion description needs expressed in a not-straightforward 

manner as on the Hill’s coordinate. While the formation is completely frozen, the Hill’s state 

vectors are not frozen. As this implies, the use of inertial coordinate has some practical advantage. 

On the p-coordinate introduced here, the measurements are nearly the direct observation 

information obtained on the spacecraft to the adjacent spacecraft. On a complete frozen formation, 

the p-coordinate presents a frozen constant vector. And it apparently looks similar to the relative 

motion in the inertial motion. 

 

3.3 Comparison of Hill’s (C-W), Inertial and p-coordinates 

So far, the paper has discussed about how non-autonomous systems work and what kind of 

distinction appears. What follows summarizes the characteristics of it. 

 Formation measurement does not relate to the Hill’s coordinate, since in most cases the 

spacecraft is stabilized in three-axis manner. 

Fig. 3: Measurements Properties and p-Coordinate and Inertial Coordinate 
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 Inertial frame is useful as for astronomy missions in this regard. But the relative motion is 

always varying even though the formation gets settled to natural trajectories. 

 p-coordinate retains measurement characteristics and shows the frozen property for settled 

formation. 

 

Table 1 Summary of Comparison among C-W, Inertial and p-Coordinates 

  C-W (Hill’s) Inertial p-coordinate 

Eq. of Motion Available Available Available 

Time-Invariance Invariant Variant Variant 

Analytic solutions Available Available Available 

Observability* Not Appropriate Appropriate Suitable 

Formation Target Time-Varying Time-Varying Frozen 

Steady State Control Input Persistently Varying Persistently Varying Zero 

Appropriate for NADIA Tracking Astronomy Formation Maintenance 

Advantage Comprehensive 

Stability Augmentation 

Minimizes  

suitable Performance 

 Index 

Defines a specific 

 bin/slot easily that each 

 s/c to be controlled 

 

 

4. Formation design around elliptical orbit using the levi-civita coordinate transformation 

 

4.1 Levi-Civita Coordinate Transformation 

What this paper aims at is eliminating the restoring terms from the equations of motion, so 

that the resulted equation automatically can include the steady state target vector in it. The 

generalized Hill’s equation which is applicable to circular and elliptical orbits is written as follows: 
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 (26) 

The paper has indicated the possible coordinate transformation by which the restoring terms 

can vanish. However, specific manipulation is not rewarded enough. When we look at the original 

two bodies motion generally, which is applicable widely for ellipses, it is written as: 

 
3r


 r r 0  (27) 
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And here is introduced the coordinate transformation of 
1ds

dt r
 . It is the Levi-Civita 

transformation. When we now confine our discussion to the planar motion, the introduction of  

 
2 2

1 1 2 11 2

2 2 1 21 2

( )
2

x u u uu u
L u u

x u u uu u

     
      

     
 (28) 

 
1 2

2 1

( )
u u

L u
u u

 
  
 

 (29) 

makes the equations of motion to  
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  is introduced. The use of this Levi-

Civita transformation converts the equations of motion into linear ordinary equations of motion as 

above. The fictitious independent variable s relates to the eccentric anomaly E as 
2

E
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solution is expressed as: 
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The independent variable is replaced hereafter as E and anE
r

  holds.  
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Fig. 4:  The Levi-Civita Coordinate Transformation and Linearization 
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does not grow up in the same rate between multiple separated satellites. Though the motion can be 

described very simple in the u-plane, some measures should be taken to compensate for the 

deviation of the independent variables between multiple satellites. 

 

4.2 Derivation of Basic Equations for the Formation Design 

Here the situation where a mother satellite (“satellite 1”) is flying in an elliptical orbit and a 

daughter satellite (“satellite 2”) is flying near the mother. The mother crosses its perigee at time t = 

0 or s1 = 0. The trajectory of the mother  1u  is expressed as: 
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1u =  (32) 

Here,    in order that E1=0 corresponds to the perigee. 

The deviation of the daughter relative to the mother can be expressed using the following 

three parameters (Fig. 5). 

1. Deviation of eccentric anomaly E of the daughter relative to the mother at time t = 0. It is 

assumed that the daughter crosses its perigee at s2 = 0 or E2=0 (t is not zero). 

2. The difference of the eccentricity e between the daughter’s orbit and the mother’s.  

3. The angular difference of the direction of  perigee  

It is assumed that the semi-major axis a of the daughter is the same as that of the mother. 

This implies that the period of the orbit is the same. Otherwise, the daughter will drift from the 

mother as time passes and the formation will collapse.  

The effect of these three parameters on the motion of the daughter can be expressed by the 

u1

u2

“mother”

“daughter”

E/2

1. Phase lead E/2

u1

“mother”

“daughter”

2. Eccentricity e 



 u1

u2

“mother”

“daughter”



3. Rotation 









nadir Fig. 5:  Three types of orbital deviation 



 12 

difference of eccentric anomaly E and geometrical parameter ( and ) of the daughter from the 

mother. The relation is derived in the following section. It is also assumed that , , 1E e   . 

Effect of  E 

When initial displacement of eccentric anomaly  is applied to the daughter at time t = 0, 

1 2 1E E E   does not keep constant for t or E1. Considering the Kepler equation E-e*sin(E) = n*t, 

the difference of the eccentric anomaly  between the daughter and the mother varies and is 

approximately expressed using  E1 and the initial displacement  
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
 (33) 

Effect of e 

When the eccentricity of the daughter’s orbit is deviated,  and  as well as E2 is affected. 

The deviation of these parameters is calculated using geometrical relation between , and e and 

also the Kepler equation: 

 
2 2( )

4
e

 





     (34) 

 
2 2( )

4
e

 





    (35) 

 1
2

1

sin

1 cos

E
E e

e E
  


 (36) 

When the above two parameters are applied, the motion of the daughter is expressed as 

follows: 
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Effect of  

Finally, the rotation of the direction of the perigee  is applied,  
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   

 
       

  
        
 

u u u

 (38) 

And the relative position of the daughter in the u-plane is expressed as: 
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1 1 1
1 2

1 1 1
1 2

cos ( )sin sin
2 2 2 2

cos sin ( )cos
2 2 2 2

E E E
E E

E E E
E E


 




 

 
      

  
       
 

u  (39) 

When eqs. (34) – (36) are substituted, the relative motion of the daughter in the u-plane is 

obtained as a function of the three parameters , ,E e   : 

 

1 1
2 2 1

1 1

1 1

1 1
2 2 1

1 1

1 1

sin sin (1 )sin
( ) 2 2cos sin

4 2 2(1 cos ) 2 2(1 cos )

sin cos (1 )cos
( ) 2 2cos sin

2 4 2 2(1 cos ) 2(1 cos )

E E
E e

E E
e E

e E e E

E E
E e

E E
e E

e E e E

 
 

 




 
 

 


  
  

       
   

   
  

    
         
  

u  (40) 

This equation is the basis for the formation design. 

 

4.3 Design of Pseudo-Constant Distant Formation for Elliptical Orbit 

In this section, pseudo-constant distant formation for elliptical orbit is designed using the 

basic equations derived above. 

By differentiating the eq.(28), relative position in the physical plane 2 1 r = r r  can be 

expressed by the relative position in the u-plane 2 1 u = u u   and 1u  : 

 12 ( ) r L u u  (41) 

so that the relative distance between the daughter and the mother is  

 
2 2 2

1 1 14 ( ) ( ) 4T T T      r r r u L u L u u = u u  (42) 

where 
2

1 1 1( ) ( )T L u L u u 1  . For the relative distance to be constant, the following relation should 

hold: 

 

2

2 2 2 2

1 1

11 cos
const const const const

e E


        



u
r u u r u  (43) 

Note that the formation  constu =  achieves constant distance  r   in case the reference 

orbit is circular (e = 0). 

When we now confine the discussion to the case e = 0, relative motion of the daughter in 

the u-plane becomes: 
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1

1

1

1

1

1

(1 )sin
2sin

2 2(1 cos )
(1)

(1 )cos
2cos

2 2(1 cos )

E
e

E
E

e E
u

E
e

E
E

e E


 




 

 
 

   
 

 
 

    

 (44) 

And when the approximation 1

2

1

1 cos1

1 cos 1

e E

e E e




 
  is applied, 

 

1 1

1 1

(1 cos )
sin

2 2(1 )
(1)

(1 cos )
cos

2 2(1 )

E E e E

e
u

E E e E

e









   
   

  
   
     

 (45) 

Taking into consideration that u   is the linear sum of ,E  ,  we can redefine E  as /E E   . 

Note that  1E  does not hold for the new E . Using this new definition E , 

 

1 1

1 1

(1 cos )
sin

2 2(1 )
(1) /

(1 cos )
cos

2 2(1 )

E E e E

e
u

E E e E

e




 




   
   

  
   
     

 (46) 

so that 

2 22 2
2 21 1 1 1

2

2
2 2 2 2 2 2 2 2 21 1 1 1 1 1

2

2 1
1

(1 cos ) (1 cos )(1) (2)
sin cos

2 2(1 ) 2 2(1 )

1 cos (1 cos )
cos sin ( cos sin )

2 2 1 4(1 ) 2 2

1 cos
(1 cos ) 1 (

1

E E e E E E e Eu u

e e

E E e E e E E E
E E

e e

e E
a e E a e E a

e

  
 



    

      
      

    

 
      

 


     



2
3

1 2
1 cos )

4(1 )

E
e E

e






 (47) 

Here, we define 1cosx e E  ( )e x e   ,  

 
2 2 2

2 3

2 2

(1) (2) 1
(1 ) 1 (1 )

1 4(1 )

u u x E
x e E x

a e e

 



  
      

 
 (48) 

For the relative distance to be (pseudo-) constant, the following function ( )f x  should be (pseudo-) 

constant for all x  ( )e x e   : 

 
2 2 2 2

2

2 2

(1) (2) 1 1
( ) /(1 ) (1 )

1 1 4(1 )

u u x e E
f x x E x

a x e e

 



   
     

  
 (49) 
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It can be derived that the variation of ( )f x  is minimum if  ( )f x  takes its local minimum at 

x = 0, or (0) 0f   . This leads to 2 24(1 )E e    and remembering the definition of the new E , 

the pseudo-constant distance formation can be achieved when: 

 2(1 )E e    (50) 

 

4.4 Numerical Verification of the Formation Design 

Here, the above formation design is verified by numerical simulations. The orbit of the 

mother is set so that the apogee altitude is 8000[km] and the perigee altitude 600[km]. The 

eccentricity e is 0.3465. Numerical simulations are done in such a way that the motion of the 

mother and the daughter is propagated using eq.(27), and the ratio of minimum distance to 

maximum distance is evaluated which we call “constant distance ratio”. The initial condition for the 

daughter 
22 , 2 2, ,r r u u  is generated through ,E  .  

Fig. 6 shows the constant distance ratio for ,E  . The horizontal axis is  , the vertical axis 

E , and the color corresponds to the constant distant ratio. The value of  ,E   is selected in the 

range 0 0.1E    [rad] and 0.05   [rad]. The figure indicates that the constant distance ratio is 

maximum along a line /E const   and the gradient well corresponds to eq.(50), and 95% of 

constant distance ratio was achieved, which is also shown in the time history of relative distance 

(Fig. 7). 

 

Fig. 6: Constant distant ratio for e=0.3 
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Fig. 7: Relative distance history for e=0.3 

 

4.5 Design of Constant Angular Separation Formation for Elliptical Orbit 

Here, we consider another daughter satellite (“satellite 3”) for the design of “constant 

angular separation” formation. The angular separation is defined as the angular difference between 

the direction from satellite 1 to satellite 2 and that from satellite1 to satellite3, or the angle of 

satellite 3 – satellite1 – satellite 2. Relative position vector of satellite 2 and 1  2 2 1  r r r  and that 

of satellite 3 and 1 3 3 1  r r r   is expressed as: 

 
2 1 2

3 1 3

2 ( )

2 ( )

 

 





r L u u

r L u u
 (51) 

So, the angular separation  is calculated as: 

 2 3 2 1 1 3 2 3

2 3 2 1 3 1 2 3

4 ( ) ( )
cos cos

4

T T T T

u

     
 

     
   

r r u L u L u u u u

r r u u u u u u
 (52) 

where u  denotes the angular separation in the u-plane. This indicates that the “constant angular 

separation” formation can be designed so that the angular separation in the u-plane is kept constant. 
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5. Conclusion 

This paper first discussed the appropriate coordinate expression for different kind of 

formation flying missions, where a formation around circular orbit is assumed and three different 

coordinates are presented; 1) C-W coordinate, 2) Inertial coordinate and 3) p-coordinate. Although 

the three coordinates are similar in terms of controller stability, the p-coordinate is shown effective 

for a formation maintenance control where each spacecraft is moving on a locus in the C-W 

coordinate, in terms of control performance index and formation maintenance property.  

Then, the discussion is extended to the formation around general elliptic orbit. The design of 

formation is not so simple as for the case of circular trajectory. In this paper, formation design 

strategy around elliptical orbit was derived through the regularization technique and Levi-Civita 

coordinate transformation. As an example, constant distant formation around elliptical orbit was 

derived analytically and the strategy was also verified through numerical simulations. The results 

can lead to the derivation of another generalized p-coordinate for the case of elliptic reference orbit. 

This paper encourages engineers to visit non-autonomous coordinates in some practical 

applications rather than resorting to the C-W coordinates. 
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