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Аннотация. В работе рассматривается технология оперативного обнаружения и 

компенсации преднамеренных воздействий на оптический канал связи, 

построенный по принципу передачи сигналов по видимому свету с 

использованием светодиодного излучателя для мультиканальной 

малогабаритной бортовой радиолокационной станции. Предложена модель 

пакетного протокола передачи данных, в котором преамбула и контрольная 

последовательность пакетов используются для синхронизации и оценки 

фоновой световой засветки и внешних преднамеренных атак. В модели 

применено Пуассоновское распределение, позволяющее учитывать четыре 

класса внешних воздействий на оптический канал: устойчивая засветка 

приёмника сигналов, кратковременные импульсные световые вспышки, 

воспроизведение ранее зарегистрированного сигнала (replay) и имитация 

легитимного начала пакета (ложная преамбула). Имитационное моделирование 
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при характерных параметрах геометрии канала и фоновой засветки 

демонстрирует надёжное раннее обнаружение (истинно-положительные ≈ 0,85 

при ложных тревогах ≈ 0,12) и сохранение доли доставленной полезной 

информации. 

Ключевые слова: бортовой светодиодный излучатель, связь по видимому свету, 

VLC, компенсация преднамеренных воздействий, передача информации по 

видимому свету. 

Финансирование: исследование выполнено за счет гранта Российского научного 
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Abstract. The technology of in-packet, real-time detection and mitigation of intentional 

optical interference in an LED-based visible-light communication (VLC) link for a 

compact multichannel airborne radar is considered. An original packet protocol is 

presented that uses a known preamble for coarse synchronization and background 

estimation and a control sequence for intra-packet diagnostics under a Poisson count 

model. Four threat classes are addressed: steady receiver glare, short impulsive flashes, 

replay of previously recorded signal fragments, and spoofing of a legitimate start via a 

false preamble. Detection statistics include a stable background shift on control zeros, 

exceedance counting for impulsive events, a normalized inter-slot dependence 

coefficient for replay, and a template-mismatch rate for preamble spoofing. Two intra-
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packet adaptation mechanisms are introduced-dynamic threshold update with local 

outlier suppression and controlled redundancy/re-timing of optical pulses-both 

preserving the end-to-end delay budget. The description is accompanied by block 

diagrams and timing plots illustrating the diagnostic sequence and decision flow. 

Preference is given to a unified decision basis built on Poisson statistics with detector 

thresholds preset to required false-alarm levels, enabling low computational overhead. 

Experimental results in a representative simulation campaign (typical geometry, 

background illumination, and all four interference types) demonstrate reliable early 

detection (≈ 0.85 true-positive at ≈ 0.12 false-alarm) and sustained payload delivery via 

intra-packet adaptation, including BER reduction under impulsive interference 

compared with a non-adaptive baseline. 

Keywords: edge-lit LED emitter, visible light communication, VLC, intentional 

interference compensation, visible light information transmission. 

Funding: the reported study was funded by a grant from the Russian Science Foundation 

(project No. 24-79-10259). 

 

Введение 

Малогабаритные бортовые радиолокационные станции (МБРЛС) 

применяются в задачах наблюдения, картографирования и мониторинга 

обстановки, где критически важны оперативная передача служебной и 

измерительной информации, невысокая масса аппаратуры и устойчивость к 

внешним воздействиям [1, 2, 3]. В составе таких станций востребованы каналы 

связи, обеспечивающие передачу данных в условиях ограничений на 

использование радиочастот, а также в сценариях, где требуется низкая 

электромагнитная восприимчивость [4, 5]. В данном случае рассматривается 

малогабаритная бортовая радиолокационная станция мультиканальной 

архитектуры: радиолокационный канал выполняет функции обзора и 

картирования, а оптический канал служит независимым служебным каналом для 

передачи данных телеметрии или сигнализации. Каналы физически и 

функционально разделены; объединение информации, полученной из каждого 



4 
 

канала, осуществляется на уровне системной синхронизации при обработке и 

обмене метаданными, что исключает смешение радиочастотной и оптической 

составляющих. 

Одним из технологически простых и вместе с тем перспективных решений 

в области решения таких задач является передача информации по оптическому 

каналу в видимой части спектра света: светодиодный излучатель формирует во 

времени последовательность световых импульсов, а фотоприёмник на 

принимающей стороне регистрирует изменения светового потока и 

восстанавливает передаваемую последовательность битов информации [6, 7].  

 

Постановка задачи 

Для обеспечения надёжной передачи служебной и измерительной 

информации мультиканальной МБРЛС по оптическому каналу в видимой части 

спектра света требуется автоматизированное выявление нарушений в работе 

канала и оперативная реакция на них в пределах допустимой задержки. Ручная 

настройка порогов и режимов передачи данных в реальном времени 

непрактична и субъективна: статистические свойства наблюдений на приёмной 

стороне изменяются под воздействием фоновой засветки, дрожания наведения и 

частичных перекрытий линии визирования, а также при преднамеренных 

оптических воздействиях [8].   

Эти факторы напрямую влияют на устойчивость синхронизации по 

служебным фрагментам передаваемого пакета (преамбула и контрольная 

последовательность), что приводит к росту ошибок на полезной части сигнала и 

к потере доли полученной информации, если не предусмотрены механизмы 

ранней диагностики и управляемой адаптации режима передачи информации [9-

11]. 

На рисунке 1 представлена структурная схема формирования оптического 

канала связи «Светодиодный передатчик мультиканальной МБРЛС – 

фоточувствительный приемник» с учетом фоновой компоненты окружающей 

среды и преднамеренного воздействия в виде дополнительных световых 

импульсов. 



5 
 

Естественный фон В

МБРЛС – передатчик
Светодиодные излучатели

Формирование битов xk

Приемник

Фоточувствительный 

модуль

Регистрация фотосчетов Zk,  

Полезный луч (xk = 1)

Добавка Аk,  

(по образцу Yk-1) 

Воспроизведение ранее 

зарегистрированного сигнала

Коэф. ослабления αвосп 

Ложная преамбула

Внешняя засветка (А0)

Импульсная вспышка

 

Рисунок 1 – Графическое представление передачи данных по оптическому каналу с 
возникновением внешних воздействий. 

В рамках настоящего исследования решается задача разработки и 

обоснования протокола пакетной передачи данных по оптическому каналу в 

видимой части спектра для мультиканальных малогабаритных бортовых 

радиолокационных станций, то есть обладающих и радиочастотным и 

оптическим каналами связи. При этом радиочастотные каналы в данном 

конкретном примере не рассматриваются.  

 

Модель системы оптической передачи и канала распространения 

Условимся, что формируемый мультиканальной малогабаритной бортовой 

радиолокационной станцией пакет данных для оптического канала: x = (x1, x2, …, 

xN), xk ∈ {0,1}, k = 1, …, N, обладает жёсткой структурой, необходимой для 

синхронизации, диагностики и адаптации. Считаем, что передача осуществляется 

посредством оптического излучения светодиодного излучателя в видимой части 

спектра через открытую воздушную среду при наличии прямой видимости 

между передатчиком и приёмником. 

Принимаем допущение, что передаваемый пакет данных состоит из трёх 

функциональных участков: преамбулы, контрольной последовательности, 

полезной части сигнала.  
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Также считаем, что преамбула содержит исключительно известную 

приёмной стороне бинарную последовательность и используется для начальной 

синхронизации, а также для оценки фоновой засветки и уровня полезного 

сигнала [12]. 

Контрольная последовательность (в ряде технических источников – 

опорная последовательность) не содержит полезных данных, но состоит из 

заранее согласованных символов, предназначенных для диагностики состояния 

канала в пределах текущего пакета, обнаружения преднамеренных оптических 

воздействий (постоянная засветка, импульсные вспышки, воспроизведение 

ранее зарегистрированного сигнала (replay attack)), адаптации параметров 

приёма, в частности – порогов декодирования.  

Таким образом, контрольная последовательность играет роль служебного 

диагностического блока, обеспечивающего оперативную перестройку режима 

передачи до завершения текущего пакета. 

Геометрия канала распространения определяется расстоянием 𝑟 между 

аппаратами и углом отклонения θ их оптических осей. Интенсивность полезного 

сигнала на приёмной стороне подчиняется закону обратных квадратов и зависит 

от направленности излучения [13].  

Для 𝑘-го слота длительностью 𝑇𝑠 > 0 полезная компонента интенсивности 

описывается выражением: 

0 2

cos
( , ) ,s эфr G

r


    

 

где 𝜂0 – нормировочный коэффициент, отражающий эффективность 

передатчика и приёмника, фотосчёты/Вт; 

𝑟 – расстояние между передатчиком и приёмником, м; 

θ – угол между оптическими осями, рад; 

𝐺эф – эффективный коэффициент усиления оптической системы 

(диаграммы направленности), безразмерный [14]. 

Медленные вариации уровня полезного сигнала, вызванные дрожанием 

платформы и изменениями ориентации, учтены через множитель 𝛼𝑘 ≈ 1, 

постоянный на масштабе пакета [15, 16]. 
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В каждом слоте 𝑘 выполняется 𝐿 равномерных по времени подвыборок. 

Результат ℓ-й подвыборки в слоте 𝑘, обозначаемый 𝑍𝑘,ℓ, моделируется 

распределением Пуассона [17]. Тогда математическое ожидание числа 

фотосчётов 𝜆𝑘,ℓ в подвыборке (𝑘, ℓ) обусловлено суммой трёх физических 

вкладов: полезного сигнала, фоновой засветки и возможного преднамеренного 

воздействия: 

𝜆𝑘,ℓ = xk ⋅ ηs(r, θ) ⋅ αk + B + Ak,ℓ, 

где 𝜆𝑘,ℓ – ожидаемое (среднее) число фотосчётов в подвыборке (𝑘, ℓ)  

счёты/подвыборка; 

ηs(r, θ) – вклад от полезного сигнала при передаче «1», счёты/подвыборка; 

αk – множитель, учитывающий дрожание наведения, безразмерный; 

𝐵 – уровень фоновой засветки, счёты/подвыборка; 

Ak,ℓ, – добавка к ожидаемому числу фотосчётов, возникающая при 

поступлении на приёмник дополнительного излучения вследствие 

преднамеренного внешнего воздействия (например, засветки или импульсной 

вспышки), счёты/подвыборка. 

Преамбула содержит известную приёмнику бинарную последовательность: 

1( ..., ) {0,1} ,preNpre pre pre

Ns s s   

где символы «0» и «1» расположены заранее определённым образом. Она 

используется для начальной диагностики канала: по слотам с 0pre

ks  оценивается 

уровень фоновой засветки, а по слотам с 1pre

ks   – полезный уровень сигнала. 

Оценка фоновой засветки вычисляется как среднее по всем подвыборкам 

тех слотов преамбулы, где ожидается «0»: 

0

,

10

1 1
,

| |

L

k

k M

B Z
M L 

 
  

 
 

 

где B – оценка фонового уровня засветки, счёты/подвыборка; 

M0 ⊂ {1, …, Npre} – множество индексов слотов преамбулы с 0pre

ks  ; 

L – число подвыборок на слот, безразмерное; 

Zk,ℓ – зарегистрированное число фотосчётов в подвыборке (𝑘, ℓ), счёты; 

∣M0∣ – мощность множества M0, то есть число слотов с ожидаемой «0», шт. 
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Оценка полезного уровня сигнала выполняется по слотам преамбулы, в 

которых ожидается передача «1», с предварительным вычитанием фона: 

1

,

11

1 1
,

| |

L

s k

k M

Z B
M L


 

 
  

 
 

 

где s  – оценка интенсивности полезного сигнала, счёты/подвыборка; 

M0 ⊂ {1, …, Npre} – множество индексов слотов преамбулы 1pre

ks  . 

Моделирование преднамеренных воздействий происходит следующим 

образом:  

- при постоянной засветке Ak,ℓ = A0, для всех (k, ℓ), где A0, – постоянная 

добавка, фотосчёты/подвыборка;  

- при импульсных вспышках Ak,ℓ = Ap ⋅ 1(k, ℓ) ∈ P, где Ap – амплитуда 

воздействия, 𝑃 – множество поражённых подвыборок; 

- при воспроизведении сигнала (replay attack): 

, 1( ) ,k k s k rep kx B Y B             

где  
1 1,1

1 L

k kY Z
L

 
 

 – среднее число фотосчётов в предыдущем слоте пакета;  

αrep ∈ (0, 1) – коэффициент ослабления (масштабирования) имитированного 

сигнала, описывает, насколько интенсивным получится воздействие при 

воспроизведении ранее записанного фрагмента; задаётся в рамках сценария 

преднамеренного воздействия типа «воспроизведение ранее записанного 

сигнала» и отражает уровень ослабления перехваченного наблюдения при его 

повторном излучении; 

(⋅)+ = max(0, ⋅)+ – операция взятия положительной части, применяемая для 

исключения отрицательных значений при вычитании фона (в случае, если 

наблюдение в предыдущем слоте меньше фонового уровня, вклад от 

воспроизведения ранее зарегистрированного сигнала обнуляется) [18].  

Ложная преамбула моделируется на уровне синхронизации через 

случайные корреляционные совпадения [19] при поиске 𝑠pre. Решение о 

принятом бите в слоте 𝑘 принимается по суммарному числу фотосчётов: 
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,1
1, ,

0, ,

L

k

k

Z D
x

иначе


 

 




 

где 𝐷 – адаптивный порог, рассчитываемый на основе   и B , 

фотосчёты/слот. 

Далее обозначим контрольную (служебную) последовательность длиной 

𝑁ctrl и её индексное множество:  

Kctrl = {k: k принадлежит контрольной последовательности}, ∣ Kctrl ∣ = 𝑁ctrl , 

где Kctrl – индексы слотов контрольной последовательности (безразмерно);  

𝑁ctrl – общее число индексы слотов контрольной последовательности 

(безразмерно). 

Разобьём Kctrl на подмножества слотов, где ожидается «0» и «1»: 

Kctrl(0) = {k ∈ Kctrl : sctrl(k) = 0}, Kctrl(1) = {k ∈ Kctrl : sctrl(k) = 1}. 

Здесь sctrl(k) ∈ {0, 1} – известный символ контрольной последовательности в 

слоте 𝑘 (безразмерно). 

Для постоянной засветки проводится тест на устойчивое превышение 

уровней «нуля» в контрольной последовательности: 

(0)(0)

1
,

ctrl

ctrl k

k Kctrl

B Y B
K 

  
 

где ΔBctrl – оценка добавки к фону на контрольной последовательности, 

счёты/подвыборку; 

  ΔBctrl > τB ⇒ признак постоянной засветки, величина добавки 0 ctrlА B  ; 

где τB – порог по добавке, выбираемый под заданную допустимую 

вероятность ложной тревоги на основе пуассоновской модели, 

счёты/подвыборку. 

Для импульсных вспышек света (локальные выбросы по подвыборкам) 

считаем количество превышений на уровне подвыборок сверх «фоно-пороговой» 

границы: 

 , (0)

1

1 ,
ctrl

L

k

k K

E Z B q
 

   
 

где E – число зафиксированных вспышечных превышений (безразмерно, 

«шт.»);  
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1{⋅} – индикаторная функция события, если условие в фигурных скобках 

выполняется → индикатор равен 1, если не выполняется → индикатор равен 0. 

qα(0)  – минимальное значение, которое превышается с вероятностью не 

более (1-α) при распределении Пуассона для B , счёты/подвыборку. 

Правило выполнения аналогично описанному выше:  

E > τE ⇒ признак импульсных вспышек (локальная фильтрация выбросов пр

и декодировании), где τE  – порог по числу превышений, подбираемый из 

условия: Pr (𝐸 > τE∣без вспышек) 

Для учета воспроизведения ранее зарегистрированного сигнала (attack 

replay) оцениваем зависимость текущих слотов от предыдущих после вычитания 

фона: 

 
2

1
0

\{min }

arg min ( ) ,
ctrl ctrl

восп k k

k K K

Y B a Y B


  




   
 

где восп  – оценка коэффициента воспроизведения (ослабления) ранее 

зарегистрированного сигнала, безразмерно;  

(𝑥)+ = max(0, x) – положительная часть (безразмерно); сумма ведётся по 

парам соседних слотов контрольной последовательности.  

Правило выявления:  

восп > τвосп ⇒ признак воспроизведения (для адаптации использовать восп ), 

где τвосп порог на коэффициент воспроизведения, задаётся по требуемой 

вероятности ложной тревоги 𝛽восп  (безразмерно). 

Далее выполняется проверка согласованности решений, полученных по 

контрольной последовательности, с её известным шаблоном. Вводим «черновое» 

бинарное решение по контрольным слотам: 

1
1 , ,

2
k k s ctrlx Y B k K

 
    

   

где  kx  – грубое решение о символе в контрольном слоте (безразмерно);  

порог 

1

2
s
– половина оценённого полезного уровня (счёты/подвыборку). 
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Доля несоответствий с известным шаблоном: 

 
1

1 ( ) ,
ctrl

ctrl k ctrl

k Kctrl

x s k
N




 
 

εctrl – доля ошибок на контрольной последовательности (безразмерно). 

εctrl >τε ⇒ признак ложной преамбулы (сброс/уточнение синхронизации), 

где τε  – допустимая доля несоответствий при нормальном канале 

(безразмерно). 

Таким образом возможно реализовать связь системы диагностики с 

реакцией протокола на пакет. Для оставшейся части того же пакета 

формируются параметры адаптации: 

- оценка устойчивого смещения 0 ctrlА B   используется для коррекции 

порога 𝐷 и нормировки статистик; 

- индексы (𝑘, ℓ) , (0)kZ B q  применяется для локальной фильтрации при 

вычислении  
, (0);k ks Z B q  

 

- коэффициент воспроизведения восп  служит для умеренного повышения 

порога и/или разрежения временных позиций импульсов; 

- индикатор ложной преамбулы εctrl > τε – инициирует перепроверку 

синхронизации и блокировку начала полезной части до подтверждения. 

Все пороги выбираются заранее по требуемым уровням ложных тревог с 

использованием модели Пуассона и длин контрольных последовательностей. 

На рисунке 2 показан ход обработки одного пакета. Методика обработки 

пакета выглядит следующим образом: приём служебных фрагментов (преамбула 

и контрольная последовательность), оценка служебных уровней и, диагностика 

признаков преднамерённых воздействий на контрольной последовательности, 

узел принятия решения и, при необходимости, согласованная перестройка 

режима на оставшейся части того же пакета (актуализация порога D, добавление 

избыточности, перенос/разрежение временных позиций импульсов) с 

соблюдением ограничения задержки. Завершает схему декодирование полезной 

части порогом D, с поправками при срабатывании соответствующих ветвей 

реакции) [20].
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(преамбула + контрольная последовательность)

   — средний фон (счёты/подвыборку)

  s  — полезный вклад «1» (счёты/подвыборку)

Диагностика по контрольной последовательности sctrl

- проверка синхронизации
- устойчивое завышение нулевых слотов (постоянная засветка)

- выбросы по подвыборкам (импульсные вспышки)
- автокорреляция соседних слотов (воспроизведение ранее зарегистрированного сигнала)

- несогласованность отклика преамбула/контрольная (ложная преамбула)

Обнаружены признаки
преднамеренного воздействия?

нет да

Перестройка не требуется;

использовать базовый порог D Реакция на постоянную засветку

- повысить порог на ΔD(  )
- учесть смещение фона при расчёте λₖ, 

Реакция на импульсные вспышки

- квантильная отсечка выбросов Zₖ, 

- локальная фильтрация без общего роста D

Реакция на воспроизведение ранее зарегистрированного сигнала
- контроль автокорреляции Yₖ с Yₖ ₁
- разрежение/перенос импульсов по подвыборкам
- умеренная поправка порога с учётом α_rep

Реакция на ложную преамбулу
- повторная корреляция по spre и sctrl

- уточнение точки синхронизации
- блокировка ложного старта

Согласованная перестройка режима для оставшейся части пакета
- актуализация порога D
- изменение объёма избыточности
- перенос/разрежение временных позиций импульсов
(в пределах допустимого окна задержки)

Декодирование полезной части
пороговое решение по слотам:

если Yₖ   D     ₖ = 1, иначе   ₖ = 0

Оценка по преамбуле spre

Прием служебных фрагментов

 

Рисунок 2 – Алгоритм модели оперативного обнаружения и компенсации преднамеренных внешних воздействий в светодиодном канале 
связи малой бортовой РЛС.
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Результаты экспериментов 

Для проверки работоспособности разработанной модели оперативного 

обнаружения и компенсации преднамеренных внешних воздействий в 

оптическом канале связи мультиканальной МБРЛС выполнено имитационное 

моделирование: основные параметры которого представлены в таблице 1.  

Таблица 1 

Исходные параметры моделирования сценария оперативного обнаружения и компенсации 

преднамеренных внешних воздействий в светодиодном канале связи 

Параметр Значение 

Расстояние между приёмником и 

передатчиком, r 
100 м 

Угол отклонения оптических осей, θ 0 рад 

Уровень фоновой засветки, B 2 счёта / подвыборка 

Нормировочный коэффициент 

излучения, η₀ 
50 счётов / Вт 

Эффективный коэффициент усиления, 

Gₑф 
0,8 (безразмерный) 

Длительность слота, Tₛ 1 мкс 

Число подвыборок на слот, L 10 

Длина преамбулы 16 слотов 

Длина контрольной последовательности 16 слотов 

Длина полезной части пакета 100 слотов 

Коэффициент ослабления при 

воздействии воспроизведения, αₚₑₚ 
0.6 

Амплитуда импульсной вспышки, Aₚ 40 счётов / подвыборка 

Добавка при постоянной засветке, A₀ 8 счётов / подвыборка 

Позиции вспышек (сценарий «импульс») [25, 60, 90, 110] (номера слотов) 

 

Сценарий включает передачу одного пакета фиксированной структуры 

(«преамбула → контрольная последовательность → данные») через оптический 

канал в видимой части спектра при наличии прямой видимости. В модели 

учитываются геометрические параметры (расстояние и угол между оптическими 

осями), фоновая засветка, дрожание наведения, а также два типа внешних 

воздействий: постоянная засветка, импульсные вспышки, в которые включены 

воспроизведение ранее зафиксированного сигнала и ложная преамбула. На 

приёмной стороне реализуется алгоритм диагностики по контрольной 
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последовательности и адаптации режима приёма. Эффективность модели 

оценивается по вероятности битовых ошибок, надёжности выявления 

воздействий и устойчивости передачи при изменении расстояния. 

На рисунке 3 представлены результаты экспериментального исследования 

работы алгоритма обнаружения и компенсации внешних оптических 

воздействий в светодиодном канале связи малогабаритной бортовой 

радиолокационной станции, включая сравнительный анализ эффективности 

передачи данных при различных типах помеховых воздействий и оценку 

характеристик обнаружения аномалий. 

                                      
а 

 
б 

Рисунок 3 – Результаты экспериментального исследования работы алгоритма обнаружения (а) 
и компенсации внешних оптических воздействий (б). 

 

Результаты моделирования демонстрируют эффективность 

предложенного алгоритма обнаружения и компенсации внешних оптических 

воздействий в оптическом канале связи мультиканальной МБРЛС. В сценарии 
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без воздействий зафиксирован базовый уровень битовых ошибок (Bit Error Rate, 

BER) 0,55, обусловленный естественными факторами – фоновой засветкой и 

дрожанием наведения. При постоянной засветке интенсивностью 8 

фотосчётов/подвыборку наблюдается увеличение BER до 0,5800, что 

подтверждает уязвимость системы к аддитивным помехам. Напротив, 

импульсные вспышки амплитудой 40 фотосчётов/подвыборку приводят к 

снижению BER до 0,43 благодаря эффективной работе адаптивного алгоритма, 

идентифицирующего и исключающего аномальные всплески сигнала. 

Статистика обнаружения аномалий показывает высокую эффективность с 

вероятностью правильного обнаружения 0,85 при уровне ложных тревог 0,12, 

что соответствует требованиям к системам оперативного реагирования в 

условиях ограниченного времени обработки данных. 

Заключение 

В результате исследования разработана и исследована модель 

оперативного обнаружения и компенсации преднамеренных внешних 

воздействий в оптическом канале связи мультиканальной МБРЛС. Основной 

научный вклад состоит в создании комплексного подхода к диагностике 

состояния оптического канала связи, основанного на статистическом анализе 

параметров передаваемого сигнала. Предложенная модель интегрирует в себе 

методы обнаружения четырёх основных типов преднамеренных оптических 

воздействий: постоянной засветки, импульсных вспышек, воспроизведения 

ранее записанного сигнала и имитации легитимной преамбулы. 

Практическая значимость работы заключается в создании на основании 

модели методики и алгоритмического обеспечения для повышения 

устойчивости оптических каналов связи мультиканальной МБРЛС к внешним 

помехам, что особенно актуально в условиях возрастающих требований к 

электромагнитной совместимости и защищённости систем передачи 

информации. Разработанная модель может быть использована при 

проектировании перспективных систем оптической связи, а также для оценки их 

помехозащищённости на этапе разработки. 
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