УДК 539.3

Численное моделирование и расчет податливости образца с центральной трещиной на основе графовой модели упругого тела

Тырымов А.А.

Волгоградский государственный технический университет, ВолгГТУ, проспект Ленина 28, Волгоград, 400005, Россия

e-mail: tyrymov2010@yandex.ru

Аннотация

Рассматривается метод численного анализа механических полей в деформируемом теле, основанный на графовой модели упругой среды в виде ориентированного графа. Предлагается новый тип элементарной ячейки для описания особенности, которая возникает вблизи вершины трещины в изотропном упругом материале. Уравнение элементарной ячейки получаем, пользуясь инвариантом, сохраняющимся при преобразовании элемента в ячейку. В качестве инварианта используем энергию деформации. Вывод определяющей системы уравнений основан на применении законов Кирхгофа для графов. Графовые законы (вершинный и контурный) имеют механическую интерпретацию и при уменьшении размеров сетки приводят к выполнению уравнений равновесия и совместности деформаций. Представлены результаты численного расчета податливости и коэффициента интенсивности напряжений в растягиваемой пластине с центральной трещиной, полученные графовым методом. Ключевые слова: математическое моделирование, теория упругости, ориентированный граф, трещина, сингулярность напряжений, коэффициент интенсивности напряжений, податливость.

1. Введение

При численном решении разнообразных задач механики разрушения в настоящее время в основном применяются методы конечных и граничных элементов. Их общей закономерностью является то, что дискретизация подвергается не сама среда на этапе ее моделирования, а ее континуальная модель. В то же время представляется целесообразным использование дискретных подходов на более ранних этапах моделирования. Такие возможности открывает метод анализа полей деформаций И напряжений, которых В качестве дискретных В моделей. представляющих сплошное тело, используются ориентированные графы [1,2].

Исследование системы на основе графового подхода сводится к тому, что: 1) среда рассекается на элементы, имеющие известное математическое описание; 2) для каждого элемента строят элементарную ячейку (подграф), являющуюся моделью этой части; 3) элементарные ячейки объединяют в граф – модель анализируемого тела, после чего с помощью матриц, характеризующих структуру графа, и уравнений, описывающих элементарные ячейки, получают уравнения системы в целом.

Способ конструирования графовой модели, ее конфигурация, тип переменных, применение специальным образом сконструированных матриц для вывода определяющей системы уравнений подробно изложены в [1,2].

В настоящей работе внимание сосредоточено на возможностях построенного на основе графовой модели сингулярного элемента, предназначенного для расчета напряженно-деформированного состояния в окрестности особых точек разреза, вблизи остроконечных включений и других сингулярных точек и линий.

Распределение напряжений и деформаций в окрестности вершины трещины обладает, как правило, особенностью типа $r^{-\alpha}$, где r – расстояние от исследуемой точки до кончика трещины. Асимптотика $r^{-0.5}$ присуща чисто упругим решениям, а случай $0.5 < \alpha < 1$ возникает при решении нелинейных или упругопластических задач, а также в тех задачах, где трещина выходит на границу раздела двух сред с различными упругими свойствами.

Следует отметить высокую чувствительность численных методов к особенностям моделирования напряженного состояния вблизи особых точек. В связи с этим предложен ряд альтернативных подходов к построению сингулярных конечных элементов и в настоящее время парк этих элементов достаточно широк [3]. Анализ результатов многочисленных исследований позволяет сделать вывод о том, что точность решения задач механики разрушения существенно повышается моделировании при адекватном асимптотики параметров напряженнодеформированного состояния у вершины трещины. Более того, качество аппроксимации подчас важнее, чем количество используемых элементов и расположение узлов в традиционных численных методах.

2. Матрица жесткости элементарной ячейки

В работе используется элементарная ячейка с восемью степенями свободы. При определении конфигурации элементарной ячейки в декартовой системе координат

область, занятую двумерной сплошной средой, покрываем сетью координатных линий x =const, y=const, между узлами которых устанавливаем гипотетические измерители, определяющие абсолютные нормальные деформации δ_{xx} и δ_{yy} и линейные перемещения δ_{yx} , δ_{xy} , обусловленные сдвигом (параллельные переменные $\{\delta\}$). При этом δ_{xx} , например, измеряется между двумя точками оси x, a δ_{xy} между двумя точками оси y. Измерители принимаем в качестве дуг графа, их изображаем направленными отрезками линий, причем ориентация дуг совпадает с ориентацией осей координат. Точки, между которыми проводились измерения, принимаются в качестве вершин графа.

В результате получаем элементарную ячейку прямоугольного элемента, имеющую 8 дуг и 8 вершин и состоящую из двух компонент (рис.1):

Рис.1. Элементарная ячейка, состоящая из двух компонент

Каждая из дуг графа отображает одну из следующих пар параллельных и последовательных переменных: $\delta_{xx} \div f_{xx}$, $\delta_{yy} \div f_{yy}$, $\delta_{yx} \div f_{yx}$, $\delta_{xy} \div f_{xy}$, где f_{xx} , f_{yy} и f_{yx} , f_{xy} - нормальные и тангенциальные внутренние силы (обобщенные напряжения). Таким образом, дуги элементарной ячейки отображают такие два вектора:

$$\{f\}_{c}^{t} = \{f_{d}^{xx}, f_{l}^{yy}, f_{u}^{xx}, f_{r}^{yy}, f_{d}^{yx}, f_{l}^{xy}, f_{u}^{yx}, f_{r}^{xy}\},$$
(1)

$$\{\delta\}_{c}^{t} = \{\delta_{xx}^{d}, \delta_{yy}^{l}, \delta_{xx}^{u}, \delta_{yy}^{r}, \delta_{yx}^{d}, \delta_{xy}^{l}, \delta_{yx}^{u}, \delta_{xy}^{r}\},\tag{2}$$

где индексы u, d, l, r обозначают соответственно верхние, нижние, левые и правые дуги элементарной ячейки, а символ t – операцию транспонирования.

Описание элементарной ячейки, т.е. связь векторов $\{f\}_c$ и $\{\delta\}_c$, а также зависимость их от напряжений $\{\sigma\}$ и деформаций $\{\varepsilon\}$ моделируемого тела осуществляем, исходя из равенства энергии деформации непрерывного элемента среды и энергии элементарной ячейки соответствующей этому элементу:

$$\{f\}_{c}^{t}\{\delta\}_{c} = \int_{V} \{\sigma\}^{t}\{\varepsilon\} dv, \qquad (3)$$

где $\{\delta\}_c$ и $\{f\}_c$ определяются формулами (1), (2).

Учитывая дифференциальные зависимости Коши, и моделируя сингулярный характер распределения напряжений и деформаций у вершины трещины, аппроксимируем неизвестные деформации в пределах элемента следующими выражениями:

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = a_0 + a_1 x + a_2 y + a_3 r^{-\alpha}, \quad \varepsilon_{yy} = \frac{\partial u_y}{\partial y} = b_0 + b_1 x + b_2 y + b_3 r^{-\alpha},$$

$$\frac{\partial u_x}{\partial y} = c_0 + c_1 x + c_2 y + c_3 r^{-\alpha}, \quad \frac{\partial u_y}{\partial x} = d_0 + d_1 x + d_2 y + d_3 r^{-\alpha},$$
(4)

$$\gamma_{xy} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = c_0 + d_0 + (c_1 + d_1)x + (c_2 + d_2)y + (c_3 + d_3)r^{-\alpha}$$

где $r(x, y) = \sqrt{x^2 + y^2}$ – расстояние от произвольной точки элемента до вершины трещины. Предполагается, что начало локальной декартовой системы координат располагается в вершине трещины, а сама трещина лежит на оси *Ox*. Значения коэффициентов в формулах (4) удается выразить через деформации сторон элемента [1]. В результате относительные деформации внутри четырёхугольного элемента можно выразить через абсолютные деформации его сторон

$$\{\varepsilon\} = [L]\{\delta\}_c, \tag{5}$$

где

$$\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} \ell_{11} & \ell_{12} & \ell_{13} & \ell_{14} & 0 & 0 & 0 & 0 \\ \ell_{21} & \ell_{22} & \ell_{23} & \ell_{24} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ell_{35} & \ell_{36} & \ell_{37} & \ell_{38} \end{bmatrix}.$$
(6)

элементы матрицы [L] имеют вид

$$\ell_{11} = \frac{0.5}{\Delta x} + \frac{y - y_c - 0.5k_7(A_2 + A_1)/\Delta x + k_7 r^{-\alpha}}{k_{11}}, \quad \ell_{12} = -\frac{(x - x_c)k_1}{k_{12}}, \quad \ell_{13} = \frac{1}{\Delta x} - \ell_{11},$$

$$\ell_{14} = -\ell_{12}, \quad \ell_{21} = \frac{(y - y_c)k_1}{k_{11}}, \quad \ell_{22} = \frac{0.5}{\Delta y} - \frac{x - x_c - 0.5k_2(B_2 + B_1)/\Delta y + k_2 r^{-\alpha}}{k_{12}}, \quad (7)$$

$$\ell_{23} = -\ell_{21}, \quad \ell_{24} = \frac{1}{\Delta y} - \ell_{22}, \quad \ell_{35} = \frac{0.5}{\Delta x} + \frac{(1 + k_4)(y - y_c) - 0.5k_5(A_2 + A_1)/\Delta x + k_5 r^{-\alpha}}{k_{14}},$$

$$\ell_{36} = \frac{0.5}{\Delta y} + \frac{(1 + k_4)(x - x_c) - 0.5k_9(B_2 + B_1)/\Delta y + k_9 r^{-\alpha}}{k_{13}}, \quad \ell_{37} = \frac{1}{\Delta x} - \ell_{35}, \quad \ell_{38} = \frac{1}{\Delta y} - \ell_{36}.$$

Они зависят от упругих свойств среды и являются функциями координат точек элемента. В формулах (7) Δx , Δy - длины сторон элемента, x_c , y_c координаты его центра. Значения всех входящих в (7) и зависящих от упругих свойств постоянных приведены в [1], в дальнейшем их конкретные выражения не используются. Использование равенств (3), (5) и обобщенного закона Гука для изотропного материала { σ } = [C]{ ε } позволяет представить уравнение элементарной ячейки в виде {f}_c = [K]_c { δ }_c, где

$$\begin{bmatrix} K \end{bmatrix}_c = \int_V \begin{bmatrix} L \end{bmatrix}^t \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} L \end{bmatrix} dv$$
(8)

- матрица жесткости элемента.

Граф всего тела строится по тому же принципу, что и элементарная ячейка и является результатом операции объединения элементарных ячеек. На рис. 2 представлен граф тела, состоящего из четырех элементов.

Рис.2. Граф тела из четырех элементов

Тело, расчлененное на отдельные элементы, и соответствующие ему совокупность элементарных ячеек описывается уравнением $\{f\} = [K]\{\delta\}$, где $\{f\}$ и $\{\delta\}$ - векторы внутренних сил и деформаций $\{f\}^t = \{f_{1c}^t, f_{2c}^t, \dots, f_{nc}^t\}, \{\delta\}^t = \{\delta_{1c}^t, \delta_{2c}^t, \dots, \delta_{nc}^t\},$ причем $\{f\}_{ic}^t, \{\delta\}_{ic}^t$ определяются (1), (2), а [K] - глобальная несвязная матрица жесткости тела, расчлененного на отдельные элементы $[K] = diag[K_{1c}, K_{2c}, \dots, K_{nc}]$, где $[K]_{ic}$ определены в (8), а n - число ячеек, образующих граф.

Вывод определяющей системы уравнений основан на использовании вершинного и контурного законов Кирхгофа [4]. Известно, что граф является моделью физической или технической системы только в том случае, если выбранные при его конструировании переменные удовлетворяют вершинному и контурному законам. Эти законы были установлены Кирхгофом для электрических цепей применительно к токам и напряжениям. Впоследствии оказалось, что они носят фундаментальный характер и применимы ко всем последовательным и параллельным переменным, вне зависимости от их физической природы.

Согласно вершинному закону алгебраическая сумма последовательных переменных, представленных дугами графа, равна нулю, а в соответствии с контурным законом алгебраическая сумма параллельных переменных на любом замкнутом контуре равна нулю.

В результате графовый метод позволяет построить линейную (соответствует перемещений) сингулярную квадратичной функции или аппроксимацию деформаций на четырехузловом прямоугольном элементе с 8 степенями свободы. В традиционном подходе метода конечных элементов (МКЭ) для такой аппроксимации необходимо применение элемента с 8 узлами (16 степеней свободы). В результате определяющая система уравнений графового метода содержит примерно в 3 раза уравнений меньше по сравнению с системой, выведенной традиционным способом МКЭ.

3. Сходимость аппроксимации графового метода

Важно отметить, что континуальную модель сплошной среды удается полностью восстановить из ее дискретной модели в виде ориентированного графа. Покажем, что при уменьшении размеров сетки вершинный и контурный законы приводят к выполнению уравнений равновесия и совместности деформаций теории упругости, что влечет сходимость приближенного решения к точному.

В соответствии с вершинным законом для центральной вершины 9 компоненты *U* графа и вершины 10 компоненты *V* графа (рис.2а) можно записать следующие выражения [1]:

$$-f_{d1}^{xx} + f_{d2}^{xx} - f_{u3}^{xx} + f_{u4}^{xx} - f_{r1}^{xy} + f_{r3}^{xy} - f_{l2}^{xy} + f_{l4}^{xy} = 0,$$
(9)

$$-f_{d1}^{yx} + f_{d2}^{yx} - f_{u3}^{yx} + f_{u4}^{yx} - f_{r1}^{yy} + f_{r3}^{yy} - f_{l2}^{yy} + f_{l4}^{yy} = 0.$$
 (10)

Номера у нижних индексов указывают номер элемента, которому принадлежит данная дуга. Нумерация ведется в следующем порядке: в верхнему ряду 1, 2, а в нижнем - 3, 4. Разложим значения внутренних сил элемента относительно их значений в смежных элементах в ряд Тейлора. Сохраняя по два члена, как и в [1], получим:

$$f_{d2}^{xx} \approx f_{d1}^{xx} + \partial f_{d1}^{xx} / \partial x \Delta x + \dots, f_{u4}^{xx} \approx f_{u3}^{xx} + \partial f_{u3}^{xx} / \partial x \Delta x + \dots,$$

$$f_{r3}^{xy} \approx f_{r1}^{xy} + \partial f_{r1}^{xy} / \partial y \Delta y + \dots, f_{l4}^{xy} \approx f_{l2}^{xy} + \partial f_{l2}^{xy} / \partial y \Delta y + \dots,$$

$$f_{d2}^{yx} \approx f_{d1}^{yx} + \partial f_{d1}^{yx} / \partial x \Delta x + \dots, f_{u4}^{yx} \approx f_{u3}^{yx} + \partial f_{u3}^{yx} / \partial x \Delta x + \dots,$$

$$f_{r3}^{yy} \approx f_{r1}^{yy} + \partial f_{r1}^{yy} / \partial y \Delta y + \dots, f_{l4}^{yy} \approx f_{l2}^{yy} + \partial f_{l2}^{yy} / \partial y \Delta y + \dots,$$
(11)

Подставляя (11) и (12) в (9) и (10), получим два уравнения

$$\partial f_{d1}^{xx} / \partial x \Delta x + \partial f_{u3}^{xx} / \partial x \Delta x + \partial f_{r1}^{xy} / \partial y \Delta y + \partial f_{l2}^{xy} / \partial y \Delta y = 0,$$
(13)

$$\partial f_{r_1}^{yy} / \partial y \Delta y + \partial f_{l_2}^{yy} / \partial y \Delta y + \partial f_{d_1}^{yx} / \partial x \Delta x + \partial f_{u_3}^{yx} / \partial x \Delta x = 0.$$
(14)

Учитывая, что из (3) и (5) следует $\{f\}_c = \int_V [L]^t \{\sigma\} dv$ и используя матрицу (7),

выразим f_{d1}^{xx} , f_{u3}^{xx} , f_{r1}^{xy} , f_{l2}^{xy} через напряжения, после чего меняем местами операции дифференцирования и интегрирования. В результате (13) приобретает такой вид

$$\int_{V} \left\{ \partial (l_{11}\sigma_{xx} + l_{21}\sigma_{yy}) / \partial x \Delta x + \partial (l_{13}\sigma_{xx} + l_{23}\sigma_{yy}) / \partial x \Delta x + \partial (l_{36}\sigma_{xy}) / \partial y \Delta y + \partial (l_{38}\sigma_{xy}) / \partial y \Delta y \right\} dxdy = \int_{V} (\partial \sigma_{xx} / \partial x + \partial \sigma_{xy} / \partial y) dxdy = 0.$$
(15)

Аналогичным образом уравнение (14) запишем в виде следующего интегрального равенства:

$$\int_{V} \left(\partial \sigma_{yy} / \partial y + \partial \sigma_{yx} / \partial x \right) dx dy = 0.$$
(16)

В силу произвольности выбора размеров ячейки равенства (15), (16) возможны лишь при равенстве нулю подынтегральных функций, т.е. при выполнении уравнений равновесия:

$$\partial \sigma_{xx} / \partial x + \partial \sigma_{xy} / \partial y = 0, \quad \partial \sigma_{yy} / \partial y + \partial \sigma_{yx} / \partial x = 0.$$

Также как это сделано в [1], можно показать, что контурный закон в результате некоторых комбинаций контуров приводит к уравнениям совместности деформаций. Рассмотрим разность контуров, образованных дугами ячеек 1 и 3 компоненты *U* графа, представленной на рисунке 2а.

$$\delta_{xx}^{u1} - \delta_{xx}^{d1} - \delta_{xy}^{l1} + \delta_{xy}^{r1} - \delta_{xx}^{u3} + \delta_{xx}^{d3} + \delta_{xy}^{l3} - \delta_{xy}^{r3} = 0.$$
(17)

Контуры ячеек 1, 2 компоненты V графа (рисунок 2б) приводят к такому выражению:

$$\delta_{yx}^{u1} - \delta_{yx}^{d1} - \delta_{yy}^{l1} + \delta_{yy}^{r1} - \delta_{yx}^{u2} + \delta_{yx}^{d2} + \delta_{yy}^{l2} - \delta_{yy}^{r2} = 0.$$
(18)

Поскольку дуги $\delta_{xx}^{l1}, \delta_{xx}^{u3}$ образуют замкнутый контур, то $\delta_{xx}^{d1} = \delta_{xx}^{u3}$.

Разложим деформации $\delta_{xx}^{d1}, \delta_{xx}^{d3}$ и $\delta_{xy}^{r1}, \delta_{xy}^{r3}$ в ряд Тейлора, сохраняя в нем два члена:

$$\delta_{xx}^{d1} \approx \delta_{xx}^{u1} + \partial \delta_{xx}^{u1} / \partial y \Delta y,$$

$$\delta_{xx}^{d3} \approx \delta_{xx}^{u3} + \partial \delta_{xx}^{u3} / \partial y \Delta y = \delta_{xx}^{u3} + \partial \delta_{xx}^{d1} / \partial y \Delta y =$$

$$= \delta_{xx}^{u3} + \partial (\delta_{xx}^{u1} + \partial \delta_{xx}^{u1} / \partial y \Delta y) \partial y \Delta y,$$
(19)

$$\delta_{xy}^{r1} \approx \delta_{xy}^{l1} + \partial \delta_{xy}^{l1} / \partial x \Delta x, \qquad \delta_{xy}^{l3} \approx \delta_{xy}^{l1} + \partial \delta_{xy}^{l1} / \partial y \Delta y,$$

$$\delta_{xy}^{r3} \approx \delta_{xy}^{l3} + \partial \delta_{xy}^{l3} / \partial x \Delta x = \delta_{xy}^{l3} + \partial \left(\delta_{xy}^{l1} + \partial \delta_{xy}^{l1} / \partial y \Delta y \right) / \partial x \Delta x.$$

Подставив (19) в (17), получаем

$$-\partial \delta_{xx}^{u1} / \partial y \Delta y + \partial \left(\delta_{xx}^{u1} + \partial \delta_{xx}^{u1} / \partial y \Delta y \right) \partial y \Delta y + \partial \delta_{xy}^{l1} / \partial x \Delta x - \\ -\partial \left(\delta_{xy}^{l1} + \partial \delta_{xy}^{l1} / \partial y \Delta y \right) / \partial x \Delta x = \partial^2 \delta_{xx}^{u1} / \partial y^2 \Delta y^2 - \left(\partial^2 \delta_{xy}^{l1} / \partial x \partial y \right) \Delta x \Delta y = 0.$$
(20)

Учитывая, что

$$\delta_{xx} \approx \partial u_x / \partial x \Delta x, \quad \delta_{xy} \approx \partial u_y / \partial y \Delta y$$
(21)

после подстановки (21) в (20) и сокращения на $\Delta x \Delta y^2$, получаем, что компонента *U* графа приводит к такому уравнению:

$$\partial^2 (\partial u_x / \partial x) / \partial y^2 - \partial^2 (\partial u_x / \partial y) / \partial x \partial y = 0.$$
⁽²²⁾

Аналогичным образом, разность контуров 1 и 2 компоненты V приводит к уравнению

$$\partial^2 \left(\partial u_y / \partial y \right) / \partial x^2 - \partial^2 \left(\partial u_y / \partial x \right) / \partial x \partial y = 0.$$
⁽²³⁾

Складывая (22) и (23), получим традиционное уравнение совместности деформаций:

$$\partial^2 (\partial u_x / \partial x) / \partial y^2 + \partial^2 (\partial u_y / \partial y) / \partial x^2 - \partial^2 (\partial u_x / \partial y + \partial u_y / \partial x) / \partial x \partial y = 0,$$

т.е. уравнение $\partial^2 \varepsilon_{xx} / \partial y^2 + \partial \varepsilon_{yy} / \partial x^2 = \partial^2 \gamma_{xy} / \partial x \partial y$, где $\gamma_{xy} = \varepsilon_{xy} + \varepsilon_{yx}$.

4. Численные результаты

Для реализации графового метода разработан пакет прикладных программ, который отличается простотой при подготовке входной информации, возможностью сгущения элементов в ожидаемых местах с высокой концентрацией напряжений, позволяет легко изменять механические характеристики материалов, легко изменять граничные условия, выводить информацию о полученном решении, в том числе, и в

Наличие графическом виде. таких возможностей позволяет исследовать напряженно-деформированное состояние В упругих произвольной телах неоднородной структуры. Многократный расчет на модельных задачах дает возможность выявить влияние тех или иных факторов и, целенаправленно планируя вычислительный эксперимент, эффективно решать задачи при проектировании инженерных конструкций.

С целью оценки эффективности предлагаемого сингулярного элемента рассмотрим задачу о равномерном растяжении прямоугольной пластины с центральной трещиной и проведем сравнение с результатами, известными из литературных источников.

Характеристики пластины: модуль упругости E = 100000 МПа, коэффициент Пуассона v = 0,3, ширина W = 240 мм, высота H (в диапазоне от 0,4W до 2W). Трещина имеет длину *a*, лежит на оси *Ox* и перпендикулярна стороне пластины с размером H. Изучается плоское напряженное состояние. В виду симметрии рассматривалась четверть всей области. Граничные условия задачи заданы следующим образом: на вертикальной оси симметрии при *x*=0 полагается u_x =0, на горизонтальной оси *y*=0 вне контура разреза u_y =0, контур разреза и сторона, параллельная оси *Oy*, свободны от напряжений. К оставшейся стороне пластины приложена равномерная растягивающая вдоль оси *Oy* нагрузка интенсивности σ =100 МПа. Исследуемая область разбивалась на 1344 прямоугольных элементов. В окрестности трещины использовались 2 сингулярных элемента с размером 0,4x0,2 мм. Во всех других элементах применялась линейная аппроксимация деформаций. В приводимых ниже расчетах при моделировании сингулярности напряжений

использована корневая особенность вида г^{-0,5}. Расчетная схема и пример деформированного состояния пластины показаны на рис.3.

Рис.3 Расчетная схема и деформированная сетка

Важной характеристикой при анализе процесса деформирования образца является его податливость. Следуя [5], податливость будем описывать величиной $C = 2Eu_v/(\sigma W)$, где u_v – компонента вектора перемещения в направлении *Oy*.

Для проверки применимости графового метода к анализу напряженнодеформированного состояния образца с трещиной определим величину податливости на вертикальной оси пластины в зависимости от h/W и α/W, где h расстояние до трещины. Результаты расчетов, в которых принято H/W=2, представлены в таблице 1. В верхнем ряду каждой строки таблицы приведены значения податливости, определенные графовым методом. В нижнем ряду дано отношение в процентах этих величин к соответствующим величинам из [5], определенным методом граничной коллокации. Из таблицы видно, что результаты расчетов практически совпадают.

Таблица 1.

Значения податливости на оси симметрии образца в зависимости от расстояния до трещины

h/W	α/W									
	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
0	0.41	0.64	0.89	1.18	1.55	2.04	2.76			
	101.0	100.3	100.2	100.2	100.3	100.1	99.86			
0.25	0.64	0.80	1.02	1.30	1.67	2.15	2.87			
	100.7	100.3	100.5	100.2	100.5	100.3	99.92			
0.50	1.09	1.20	1.36	1.59	1.89	2.33	3.01			
	100.1	100.1	99.98	100.2	100.2	100.2	100.2			
0.75	1.57	1.67	1.81	2.01	2.29	2.70	3.34			
	100.1	100.1	100.1	100.3	100.3	100.3	100.1			
1.00	2.07	2.16	2.29	2.48	2.75	3.15	3.78			
	100.1	100.0	100.0	100.1	100.1	100.1	99.82			

Заметим, что на линии разреза податливость C= $\Delta u_y E/(\sigma W)$ связана с раскрытием трещины и может быть использована в критерии ее продвижения [6].

В таблице 2 приведены расчеты податливости, определенные в точке максимального раскрытия трещины на центральной линии образца в зависимости от α/W и H/W.

Таблица 2.

α/W	H/W										
	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5	1.8	2.0
0.2	0,55	0,48	046	0,45	0,44	0,43	0,43	0,42	0,42	0,42	0,41
0.3	1,1	0,88	0,80	0,75	0,72	0,70	0,68	0,66	0,64	0,64	0,64
0.4	2,03	1,48	1,30	1,19	1,10	1,04	0,99	0,94	0,90	0,89	0,89
0.5	3,54	2,45	2,05	1,80	1,68	1,49	1,39	1,28	1,21	1,19	1,18
0.6	5,98	4,00	3,23	2,70	2,35	2,09	1,91	1,71	1,59	1,56	1,55
0.7	10,20	6,57	5,02	3,90	3,34	2,59	2,58	2,27	2,09	2,05	2,04
0,8	18,40	10,80	7,66	5,80	4,70	3,99	3,54	3,08	2,83	2,77	2,76

Значения податливости в точке максимального раскрытия трещины в зависимости от ее размера при различных соотношениях сторон образца

Используя графовый элемент, проведем расчет перемещений вдоль горизонтальной оси образца в зависимости от отношения длины трещины *a* к ширине образца W. Для графиков, изображенных на рис. 4, α /W=0,2, для графиков на рис. 5 соответствующее отношение равно 0,8. В расчетах принято H/W =2. Перемещениям u_x и u_y отвечают сплошная и пунктирная линии соответственно.

Из анализа графиков следует, что горизонтальные перемещения сначала убывают от свободной кромки образца, имеют вблизи вершины сравнительно небольшой всплеск, а затем практически линейно убывают до нуля в центре трещины. Вертикальные перемещения над трещиной монотонно растут, достигая своего максимального раскрытия в середине трещины. Такой же характер имеют перемещения и при других значениях α/W, изменяющихся в пределах от 0,1 до 0,9.

Рис. 4. Распределение перемещений u_x и u_y вдоль оси трещины при $\alpha/W = 0.2$

Рис.5. Распределение перемещений u_x и u_y вдоль оси трещины при $\alpha/W = 0.8$

В механике разрушения существенную роль играют коэффициенты интенсивности напряжений (КИН). КИН является тем параметром, который позволяет оценивать локальное поле напряжений в вершине трещины. Другим важным достоинством КИН является использование его для получения оценок энергии, которая освобождается при единичном продвижении трещины в теле.

Для определения коэффициента интенсивности нормальных напряжений воспользуемся расчетом перемещений вдоль линии разреза вблизи вершины трещины [7]

$$K_1 = \sqrt{2\pi} \frac{G}{\chi + 1} \lim_{r \to 0} \frac{\left|\Delta u_y\right|}{\sqrt{r}}$$

Здесь G=E/(2(1+v)) – модуль сдвига, χ=3-4v для плоской деформации и χ=(3v)/(1+v) для обобщенного плоского напряженного состояния, v- коэффициент Пуассона, r-расстояние от вершины трещины.

Принимая как в [7], выполнение вблизи вершины трещины зависимости

$$\frac{\left|\Delta u_{y}\right|}{\sqrt{r}} = A + Br$$

и используя полученные из численного решения величины разрывов нормальных смещений в двух ближайших к вершине узлах трещины, определим неизвестные A и В. В результате для коэффициента интенсивности напряжений получим

$$K_1 = \sqrt{2\pi} \frac{G}{\chi + 1} A$$

В таблице 3 приведены коэффициенты интенсивности нормальных напряжений K_1 , отнесенные к $\sigma\sqrt{\pi a}$, которые определены в зависимости от отношения высоты образца к ширине (H/W) и отношения длины трещины к ширине

(*a*/W). В верхнем ряду каждой строки таблицы приведены данные Исиды [8], во втором ряду значения, полученные графовым методом с использованием сингулярной ячейки.

Таблица 3.

Значения коэффициента интенсивности напряжений образца с центральной трещиной в зависимости от H/W и α/W

α/W	H/W										
	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5	1.8	2.0
	1.256	1.175	1.130	1.103	1.083	1.067	1.055	1.039	1.029	1.025	1.025
0.2	1.285	1.170	1.117	1.091	1.080	1.061	1.048	1.032	1.023	1.021	1.018
	1.520	1.371	1.285	1.228	1.184	1.150	1.123	1.088	1.066	1.060	1.058
0.3	1.571	1.392	1.286	1.209	1.193	1.165	1.129	1.098	1.071	1.066	1.063
	1.843	1.629	1.497	1.400	1.323	1.262	1.216	1.158	1.122	1.112	1.109
0.4	1.960	1.656	1.520	1.392	1.334	1.280	1.228	1.173	1.135	1.124	1.120
	2.247	1.967	1.773	1.619	1.496	1.403	1.334	1.251	1.203	1.190	1.187
0.5	2.356	2.003	1.808	1.625	1.535	1.431	1.352	1.278	1.220	1.209	1.205
	2.806	2.424	2.123	1.883	1.702	1.572	1.481	1.38	1.32	1.31	1.303
0.6	3.091	2.533	2.162	1.894	1.748	1.611	1.509	1.401	1.340	1.329	1.321

Как видно из таблицы результаты расчетов хорошо согласуются.

5. Выводы

Построена дискретная модель упругого тела в виде ориентированного графа. Предложен новый тип элемента для описания особенностей в напряжениях, которое возникает вблизи вершины трещины. Он использован для расчета податливости и коэффициента интенсивности нормальных напряжений прямоугольного образца с центральной трещиной. Как показали расчеты, метод позволяет получить достаточно точные результаты. Автор благодарит д.т.н. Кузовкова Е.Г., метод которого применен в работе, за любезно предоставленную возможность использования базового пакета прикладных программ, реализующих графовый метод, и полезные советы.

Библиографический список

 Кузовков Е.Г., Графовые модели в плоской и осесимметричной задачах в теории упругости: Монография Кузовков Е.Г., Тырымов А.А. - Волгоград: ИУНЛ ВолгГТУ, 2010. - 128 с.

 Тырымов А.А. Сингулярный элемент графовой модели упругой среды в декартовой системе координат // Вычислительная механика сплошных сред. 2013.
 Т.4. № 4. С.125-136.

Лущик О.Н. Сингулярные конечные элементы: обзор и классификация // Известия
 РАН МТТ. 2000. №2. С.103-114.

4. Свами М., К. Тхуласираман К. Графы, сети и алгоритмы. - М.: Мир, 1984. – 454 с.

5. Argy G., Paris P., Shaw F. Fatigue crack growth and fracture toughness. ASTM. Special Technical Publication - 579 1975. pp. 96-137.

6. Хеллан К. Введение в механику разрушения. - М. Мир, 1988.-364 с.

7. Морозов Е.М., Муйземнек А.Ю., Шадский А.С. ANSYS в руках инженера: Механика разрушения. - М.: ЛЕНАНД, 2008.-456 с.

8. Isida M. Effect of Width and Length on Stress Intensity Factors of Internally Cracked
Plates Under Various Boundary Conditions // Int. Journ. of Fracture Mech. 1971. vol.7.
№ 3. pp. 301-316.