УДК 661.666:6297.036.54-63

Исследование влияния внешних условий на тепловое состояние насадка радиационного охлаждения при высотных испытаниях.

Н.Н. Волков, Л.И. Волкова, В.В. Миронов, С.М. Цацуев.

Аннотация

Представлена математическая модель, позволяющая учесть влияние внешних условий на температурное состояние насадков радиационного охлаждения из углерод-керамических композиционных материалов. Разработана соответствующая методика численной трактовки результатов экспериментов на стендовых ЖРД.

Ключевые слова

теплообмен; сопло; насадок радиационного охлаждения; высотные испытания; баро-камера.

Введение

Наиболее эффективно неохлаждаемые сопла и сопловые насадки радиационного охлаждения (НРО) могут использоваться в ЖРД, работающих в составе разгонных блоков и высотных ступеней РН [1].

При наземных испытаниях таких двигателей необходимо воспроизводить условия соответствующие выхлопу продуктов сгорания из сопла в среду с пониженным давлением. Для этого традиционно используются газодинамические стенды, в состав, которых входит барокамера и газодинамическая труба, обеспечивающие безотрывное истечение из сопла при $P_a \gtrsim 0.05 \div 0.08$ атм (50÷80 кПа). Однако такая система испытаний приводит к существенным отличиям в условиях теплообмена на внешней поверхности насадков при наземных испытаниях и в полете. Стенки барокамеры, расположенной вокруг испытываемого сопла могут быть охлаждаемыми, что обеспечивает близкие к натурным условия радиационного охлаждения сопла. Однако для испытаний крупногабаритных сопел конструкции таких барокамер громоздки и требуют создания специальных систем охлаждения. Альтернативой может служить барокамера с внутренней теплоизоляцией, однако в этом случае не моделируется температура сопла, так как существенно изменяются условия радиационного теплообмена. Кроме того, наличие в барокамере технологических ниш, люков и отверстий, в том числе смотровых люков для визуального контроля и измерений, искажает тепловые поля. С другой стороны внутренняя теплоизоляция барокамеры может использоваться как способ создания условий утяжеленных испытаний сопел для подтверждения их надежности. Изменение условий радиационного теплообмена в охлаждаемой и теплоизолированной барокамере может приводить к отличию в температуре насадка до 200 градусов, что существенно сказывается на стойкости материалов, так как на насадках реализуется близкий к кинетическому режим взаимодействия материала с окисляющими компонентами потока, а значит, скорость уноса материала экспоненциально зависит от температуры.

Перечисленные особенности проведения испытаний ставят задачу определения этих отличий и создания методики достоверного переноса результатов испытаний насадков на летные условия.

1. Численная модель.

При создании численной модели воспроизводились условия испытания насадков из углерод-керамических композиционных материалов на стендовом ЖРД в барокамере с газодинамической трубой. Упрощенная схема размещения сопла в барокамере приведена на рис. 1.

Рис. 1. Схема расположения насадка в барокамере.

Тепловое состояние системы описывается двумя уравнения теплопроводности (отдельно для насадка и стенки барокамеры), которые связаны граничными условиями.

$$c_{\rm p}\rho_{\rm p}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda_{\rm p}\frac{\partial T}{\partial r}\right) + c_{\rm p}G\frac{\partial T}{\partial r} + \frac{d\rho_{\rm m}}{dt}\left[\frac{Q_{\rm s}}{\chi_{\rm c}} + c_{\rm p}T\left(1-\frac{\rho_{\rm 0}}{\rho_{\rm p}}\right)\right]$$
для теплоизолирующего покрытия

стенки барокамеры,

$$c_{H}\rho_{H}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda_{H}\frac{\partial T}{\partial r}\right)$$
для насадка.

где c_m, ρ_m, λ_m - удельная теплоемкость, плотность и коэффициент теплопроводности материалов, зависящие от температуры, пористости и координаты; Q_s - тепловой эффект разложения связующего (термодеструкции); c_g - удельная теплоемкость газообразных продуктов термодеструкции; ρ_g - плотность продуктов термодеструкции; G- расход продуктов термодеструкции; χ - доля связующего вещества, обращающаяся в газ при термодеструкции; ρ_0 - исходная плотность материалов; *r*- координата вдоль радиуса.

Процесс термодеструкции связки теплозащиты барокамеры описывается обобщенной реакцией в виде:

$$-\frac{d\rho_m}{dt} = k_0 \chi \rho_0 (\beta - \varepsilon / \chi) e^{-E_m / RT},$$
или
$$\rho_m = \int_0^t \chi k_0 (\beta - \varepsilon / \chi) e^{-E_m / RT} dt,$$
тогда
$$G = -\frac{1}{r} \int_{r_{s1}}^{r_{s1} + \delta} r (1 - \rho_g / \rho_0) \frac{d\rho_m}{dt} dr$$

 β - относительное содержание связки в исходном материале; $\chi = (1-k)\beta$ - доля газообразных продуктов деструкции, k - коксовое число; ε - пористость материала; E_0 - энергия активации процесса термодеструкции; k_m - предэкпоненциальный множитель этого процесса; G - плотность тока продуктов деструкции.

<u>Начальное условие</u>: $T(r,t_0)=T_0$.

Граничные условия:

$$-\lambda \frac{dT}{dr}\Big|_{r_{s1}} = \frac{\alpha}{c_p} (J_e - J_w) - \dot{m}_w H_s - \varphi \varepsilon \sigma \left(\frac{T_w}{100}\right)^4, -$$
 на огневой поверхности HPO,

$$\begin{split} \lambda \frac{dT}{dr} \bigg|_{r_{s12}} &= -\varepsilon_{np1} \sigma \Bigg[\left(\frac{T_{w12}}{100} \right)^4 - \left(\frac{T_{w21}}{100} \right)^4 \Bigg] \varphi_{12}, \ - \text{ на внешней поверхности НРО,} \\ &- \lambda \frac{dT}{dr} \bigg|_{r_{s21}} = \varepsilon_{np2} \sigma \Bigg[\left(\frac{T_{w12}}{100} \right)^4 - \left(\frac{T_{w21}}{100} \right)^4 \Bigg] \varphi_{21} - \text{ на внутренней поверхности барокамеры,} \\ &\lambda \frac{dT}{dr} \bigg|_{r_{s2}} = -\varepsilon_2 \sigma \Bigg(\frac{T_{w2}}{100} \Bigg)^4 + Q_2(t) + \alpha_2(T_{e2} - T_{w2}), \ - \text{ на внешней поверхности барокамеры} \end{split}$$

Если не учитывать потери тепла через открытый торец барокамеры, то можно принять

$$\varepsilon_{np} = \frac{1}{\frac{1}{\varepsilon_1} + \varphi_{21} \left(\frac{1}{\varepsilon_2} - 1\right)}, \text{ где } \varphi_{12} = 1, \varphi_{21} = \frac{F_{HPO}}{F_{\delta ap}}, H = F_{HPO}$$

Здесь ε_1 и ε_2 , T_{w12} и T_{w21} , r_{s12} и r_{s21} , ϕ_{12} и ϕ_{21} , F_{HPO} и F_{fap} - степени черноты, температуры, радиусы, угловые коэффициенты и площади внешней поверхности насадка и внутренней поверхности барокамеры (включая левый торец); φ - угловой коэффициент излучения с огневой поверхности через срез насадка.

При необходимости, можно учесть и конвективный теплообмен внутри барокамеры.

Массовая скорость разрушения поверхности углерод – углеродного композиционного материала насадка из-за взаимодействия углерода с окислительным, высокотемпературным потоком описывается выражением [2,3]:

$$\dot{m}_{s} = \frac{\alpha}{c_{p}} \frac{\sqrt{\left[\frac{M_{c}}{M}\Omega + 1\right]^{2} + 4B_{m}\Omega - \left[\frac{M_{c}}{M}\Omega + 1\right]}}{2\cdot\Omega},$$
$$\Omega = \frac{\alpha}{c_{p}} \cdot \frac{RT_{w}}{k_{o}P_{w}M_{c}} e^{\frac{E}{RT}},$$

где α/c_p - коэффициент тепломассообмена с учетом вдува из-за поверхностных реакций, k_0 , E кинетические константы, B_m - окислительный потенциал продуктов сгорания, M, M_c - молекулярные веса газовой смеси и углерода.

Приведенные уравнения, решались численно совместно с уравнениями пограничного слоя, учитывающими наличие в области расположения насадков тепловой завесы от регенеративно охлаждаемой части камеры и сопла ЖРД (методика расчета теплообмена приведена в работе [4]).

2. Анализ полученных результатов.

Расчеты теплового состояния насадков и барокамеры выполнены для условий испытания НРО на кислород - водородном стендовом ЖРД. Данные по условиям испытаний и материалам насадков приведены в таблице 1.

Таблица 1

Опыт №	Насадок	<i>Р</i> _к , МПа	T_k, K	k _m	Время, с
1	№4 из УУКМ с объемным насыщением SiC, плотность 1410 кг/м ³	9,15	3680	7,1	200
2	№1 УУКМ+покрытие SiC+Al ₂ O ₃	9,06	3690	7,4	200

Ниже представлено сопоставление расчетных и экспериментальных данных. На рисунках 2 и 3 приведены расчетные изменения во времени температур внешней поверхности насадков в области смотрового окна и показания инфракрасной камеры для двух опытов. Максимальная экспериментально зафиксированная температура на насадках составила 1420 К для опыта №1, и 1470 К для опыта № 2.

На рисунках 4 и 5 для опытов №1 и №2 соответственно даны рассчитанные распределения температур внутренней и внешней поверхностей насадков по длине, вдоль образующей, на которой присутствует смотровое окно. Расстояния даны от узла стыка насадков с соплом. На расчетные данные также наложены показания инфракрасной камеры в области смотрового окна. Максимальная расчетная температура на насадках составила 1600 К для опыта №1 и 1670 К для опыта № 2. Разница температур между внешней и внутренней поверхностями насадка в опыте №1 составила ~40 К, тогда как в опыте №2 ~20 К, что объясняется большей толщиной насадка №4. Температура поверхности насадков по длине имеет максимум из-за влияния на корневую зону тепловой завесы от регенеративно охлаждаемого участка сопла. В зоне расположения окна (X=100 мм от узла стыка) температура насадков ниже, чем на соседних закрытых участках из-за охлаждения излучением и именно эта температура была зафиксирована инфракрасной камерой. Отличие в тепловых условиях на насадках в области окна после испытаний проявилось в виде следа, хорошо различимого на насадке с покрытием (рис. 8).

Разработанная методика позволяет определить не только температуру насадка, но и температуру барокамеры и проанализировать, в каких условиях работает ее теплозащита. На рисунках 7 и 9 приведены рассчитанные изменения по времени температур внешней поверхности барокамеры в опытах №1 и №2 соответственно, а также показания термопар на внешней поверхности барокамеры. Показания снимались в том же сечении, что и смотровое окно

5

(X=100 мм от узла стыка насадка с соплом), но с противоположной стороны от него. Расчетные данные удовлетворительно согласуются с экспериментальными.

Рис. 2. Сравнение изменения во времени температуры внешней поверхности насадка в сечении X=100 мм от узла стыка, рассчитанной с учетом наличия окна, с показаниями инфракрасной камеры в опыте №1.

Рис. 3. Сравнение изменения во времени температуры внешней поверхности насадка в сечении X=100 мм от узла стыка, рассчитанной с учетом наличия окна, с показаниями инфракрасной камеры в опыте №2.

Рис. 4. Расчетное распределение температуры внутренней и внешней поверхностей насадка по его длине на конец работы двигателя в опыте №1 и показания инфракрасной камеры.

Рис. 5. Расчетное распределение температуры внутренней и внешней поверхностей насадка по его длине на конец работы двигателя в опыте №2 и показания инфракрасной камеры.

Рис. 6. Насадок №4(с объемным насыщением SiC) после испытаний.

Рис. 8. След окна барокамеры на насадке №1(с покрытием SiC и Al₂O₃) после испытания.

Рис. 7. Расчетное изменение во времени в сечении 100 мм температуры внешней поверхностей барокамеры и сопоставление с показаниями термопар в опыте №1.

Рис. 9. Расчетное изменение во времени в сечении 100 мм температуры внешней поверхностей барокамеры и сопоставление с показаниями термопар в опыте №2.

Хорошее согласование расчетных величин с показаниями инфракрасной камеры и термопар на поверхности барокамеры, позволяют говорить о достаточно точном описании условий теплообмена над внешней поверхностью насадка. В целом, измерения температуры насадка инфракрасной камерой и измерения температуры внешней поверхности барокамеры с помощью термопар подтверждают достоверность результатов полученных расчетным путем. Это позволяет использовать данную методику для переноса результатов экспериментов, полученных при испытаниях в барокамере на натурные условия.

Таким образом, разработана физико-математическая модель, позволяющая описывать тепловое состояние насадков радиационного охлаждения при испытаниях в барокамере с тепловой защитой. Получено хорошее соответствие расчетных и опытных данных. Методика может быть использована для переноса результатов высотных испытаний сопловых насадков двигателей на натурные условия.

Библиографический список

1. Губертов А.М., Миронов В.В., Давыденко Н.А. и др. Камера жидкостного ракетного двигателя. Патент РФ №2-196-917 от 20.01.2003.

2. В.А. Бураков. Тепломассоперенос при взаимодействии двухфазных потоков с материалами. Издательство Томского университета, Томск, 1999. –С. 280.

3. А.М. Губертов, В.В. Миронов, Л.И. Волкова и др., под редакцией А.С. Коротеева. Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива. Москва, Машиностроение, 2003г.

4. Н.Н. Волков, Л.И. Волкова. Эффективность применения газовой завесы для повышения стойкости насадков из композиционных материалов. Авиакосмическая техника и технология., №3, 1999, с.43-49.

Сведения об авторах

Волков Николай Николаевич, начальник отдела ФГУП «Центр Келдыша», к. ф.–м. н., тел.: +7 (495) 456-56-37, e-mail: volkov-nn-li@mail.ru

Волкова Лариса Ивановна, главный научный сотрудник ФГУП «Центр Келдыша», д.т.н., тел.: +7 (495) 456-56-37, e-mail: volkov-nn-li@mail.ru

Миронов Вадим Всеволодович, начальник отделения ФГУП «Центр Келдыша», д.т.н., тел.: +7 (495) 456-87-54

Цацуев Сергей Михайлович, начальник сектора ФГУП «Центр Келдыша», тел.: +7 (495) 456-56-37, e-mail: sergey.tsatsuev@gmail.com