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Аннотация. Интенсивное внедрение ортотропных материалов в различных 

областях промышленности показывает большой потенциал полимерных 

композиционных материалов (ПКМ) по показателям прочности и весовой 

эффективности. В работе представлены результаты расчетно-

экспериментальных исследований прочности ортотропных пластин со 

свободным и нагруженным отверстиями. Рассмотрены различные методы 

испытаний для образцов, моделирующих работу конструкции с проходящей и 

сминающей нагрузкой, а также образцы, моделирующие совместное действие 

указанных выше нагрузок. Для различных методов испытаний представлены 

виды образцов, схемы нагружения. На образцах со свободным и нагруженным 

отверстиями проведены экспериментальные исследования напряженно-
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деформированного состояния (НДС) и остаточной прочности ПКМ на основе 

эпоксидной матрицы и высокомодульного углеродного волокна. Показаны 

особенности исследования несущей способности пластин и соединений при 

комбинированном нагружении. Проведено сравнение экспериментальных 

данных для различных схем армирования с учетом совместного действия смятия 

и проходящей нагрузки и без неё. Показано, что расчетные и экспериментальные 

результаты удовлетворительно согласуются между собой. 

Ключевые слова: полоса с отверстием, полимерные композиционные 

материалы, смятие, проходящая нагрузка, испытания, критерии разрушения 

ПКМ, напряженно-деформированное состояние, программный комплекс LS-DYNA 

 

STRENGTH OF ORTHOTROPIC PLATES WITH FREE AND LOADED HOLES 

 

V.A. Vestyak1, M.I. Martirosov1, E.I. Smagin2 

1Moscow Aviation Institute (National Research University), Moscow, Russia 

2Public Joint Stock Company«Yakovlev», Moscow, Russia 

 smagin_ei@mail.ru  

 

Citation: Vestyak V.A., Martirosov M.I., Smagin E.I.  Strength of orthotropic plates with free and loaded 
holes // Trudy MAI. 2025. No. 145. (In Russ.). URL: https://trudymai.ru/published.php?ID=186876 
 

Abstract. The intensive introduction of orthotropic materials in various fields of 

industry shows the great potential of polymer composite materials (PCMs) in terms of 

strength and weight efficiency.  The use of PCM is accompanied by studies of the 

properties of the material and structure at the joints.  The paper presents the results of 

computational and experimental studies of the strength of orthotropic plates with free 

and loaded holes.  Various test methods are considered for samples simulating the 

operation of a structure with passing and bearing loads, as well as samples simulating 

the combined action of the above loads.  For various test methods, types of samples and 

loading schemes are presented.  Experimental studies of the stress-strain state and 

residual strength of PCM based on an epoxy matrix and high-modulus fiber were 

carried out on samples with free and loaded holes.  Approaches are presented for 
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assessing the area of the load-bearing capacity of a double-shear connection, taking into 

account the combined effect of crushing and passing loads.  Finite element models were 

developed and calculations were carried out for the load-bearing capacity of an 

orthotropic plate with a hole.  The boundary conditions for modeling a numerical 

experiment are presented, and the strength criteria used in finite element calculations 

are described.  During the analysis, the reasons for the different behavior and nature of 

destruction of the samples were considered, and a layer-by-layer analysis of strength 

was presented.  The advantages of studying the bearing capacity of plates and joints 

under combined loading are shown.  A comparison was made of experimental data for 

various reinforcement schemes, taking into account the combined action of crushing 

and passing load and without it.  It is shown that the calculated and experimental 

results are in satisfactory agreement with each other. 

Keywords: strip with a hole, polymer composite materials (PCMs), crushing, 

transmitted load, tests, failure criteria for PCMs, stress‑strain state, LS‑DYNA software 

package. 

 

Введение 

В настоящее время происходит интенсивное внедрение ПКМ в силовые 

ответственные и не силовые элементы конструкции в различных областях 

промышленности, что способствует, в том числе, повышению весовой 

эффективности разрабатываемых конструкций [1]. Однако помимо 

положительного эффекта, при проектировании следует учитывать ещё и 

негативные факторы, сопровождающие широкое внедрение ПКМ [2]. Одним из 

таких факторов являются концентраторы напряжений в виде отверстий и места 

соединений элементов конструкций, например, в виде ортотропных пластин с 

другими элементами [3-6]. Места нагруженных соединений, как правило, 

находятся в защищённых зонах и визуально обнаружить последствия действия 

нагрузок высокой интенсивности не всегда возможно, что в свою очередь может 

привести к растрескиванию и расслоению используемого ПКМ, а также вызывает 

снижение местной и общей прочности всей конструкции. Ошибки при 

проектировании мест соединений конструктивных элементов из ПКМ между 
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собой и элементами из других материалов могут привести к увеличению веса и к 

практическим проблемам в обслуживании таких мест соединений.  

 

Экспериментальные исследования 

Для оценки прочности ортотропных пластин с концентраторами 

напряжений в виде нагруженного и свободного отверстий в настоящее время 

применяют различные расчётно-экспериментальные методы. 

Например, в работе [7] приводится решение задачи Кирша: 

рассматривается растяжение изотропной полосы в виде пластины 

прямоугольной формы со свободным (незаполненным) круговым отверстием. 

Согласно полученному теоретическому результату на кромке отверстия 

создаётся концентрация напряжений в 3 раза большая, чем в регулярной части 

пластины. Данная задача представлена на рисунке 1.  

 

Рисунок 1 – а) теоретическое распределение напряжений в пластине с отверстием,  
б) теоретическое распределение напряжений на кромке отверстия  

 

Для экспериментальной оценки несущей способности в ортотропных 

пластинах с концентраторами [8] в виде свободных отверстий проводят 

испытания на статическое нагружение в соответствии с существующими 

стандартами [9,10], представленными в ГОСТ Р 56788-2015 и ГОСТ 33375-2015 

(рисунок 2).  
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    а)    б) 
Рисунок 2 - Образец на сжатие а) и растяжение б) со свободным отверстием, установленный в 

испытательную машину  

 

Для экспериментальной оценки несущей способности в ортотропных 

пластинах (выполненных, в том числе, из ПКМ) с концентраторами в виде 

нагруженных отверстий проводят испытания на статическое нагружение по 

стандарту, описанному в ГОСТ 33498-2015 [11] (рисунок 3). 

 

 

   а)      б) 
Рисунок 3 – Двухсрезная испытательная оснастка а) и образец на смятие б), установленный в 

испытательную машину  
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Указанные методы позволяют получить оценку механических 

характеристик материала и области их применений. Обработка результатов 

испытаний ПКМ на основе эпоксидной матрицы и высокомодульного 

углеродного волокна позволяет определить область несущей способности при 

совместном действии сминающей и проходящей нагрузки (рисунок 4), что в свою 

очередь может служить консервативной оценкой соединения с ортотропной 

пластиной при заданных условиях смятия. 

 

 

Рисунок 4 - Диаграмма при совместном действии сминающей и проходящей нагрузки  

 

При оценке несущей способности конструктивных решений из 

ортотропного материала описанный выше подход может привести к 

избыточному усилению схемы армирования и весовых показателей. Для 

решения данной проблемы проводят исследования, позволяющие существенно 

расширить область несущей способности соединений из ортотропного 

материала.  

Для экспериментальной оценки несущей способности ортотропных 

пластин с концентраторами в виде нагруженных отверстий проводят испытания 

на статическое нагружение по стандарту, описанному в ГОСТ Р 56790-2015 [12]. 

Метод позволяет учесть различные способы нагружения двухсрезного 

соединения, а именно включение в конструкцию образцов двух болтовых 
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соединений, что позволяет получить несущую способность при проходящей и 

сминающие нагрузке.  

В ходе экспериментальных исследований двухсрезного соединения 

используется схема, соответствующая методу А и методу В по ГОСТ Р 56790-2015. 

В пластине реализуется сложное напряженное состояние, состоящее из 

растягивающих/сжимающих напряжений в пластине и сминающего напряжения 

в отверстии. Схема нагружения и общий вид образцов в сборе представлен на 

рисунке 5. 

 

 

 

   а)      б) 

Рисунок 5 - Схема нагружения и общий вид образцов в сборе по методу А а) и методу В б) 

 

На рисунке 6 представлена технологическая оснастка и образцы при 

действии комбинации сминающей и проходящей нагрузок, закреплённые в 

испытательной машине. 
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   а)     б) 
Рисунок 6 - Испытательная оснастка и образцы при действии комбинации сминающей и 

проходящей нагрузок, установленные в испытательную машину по методу А а) и методу В б) 

 

Совместное использование комплекса методов определения несущей 

способности: полосы с отверстием, смятия и серии вариантов комбинации 

смятия и проходящей нагрузок, позволяет получить иную область применения 

материала с учетом типа соединения в конструкции (рисунок 7). 

 

 
Рисунок 7 - Диаграмма при совместном действии сминающей и проходящей нагрузки с учётом 

типа соединения  
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Моделирование виртуального эксперимента 

Для определения возможности аппроксимации полученных данных для 

иных укладок проводится серия численных расчётов с помощью метода 

конечных элементов (МКЭ). Методика определения параметров материала 

основана на моделировании приведённых выше испытаний в программном 

комплексе LS-DYNA и сравнении результатов расчёта с результатами испытаний. 

Для моделирования ПКМ [13,14] на основе эпоксидной матрицы и 

высокомодульного волокна используются восьмиузловые объёмные конечные 

элементы (КЭ) первого порядка [15,16].  

Базовые механические характеристики монослоя ПКМ были приняты 

согласно таблице 1. 

Таблица 1 

Механические характеристики монослоя ПКМ  

E
1
, МПа E

2
, МПа E

-1
, МПа E

-2
, МПа G

12
, МПа 𝜈

12
 σ

1
, МПа σ

2
, МПа σ

-1
, МПа σ

-2
, МПа τ

12
, МПа 

158000 8010 146000 9170 4460 0,32 2725 60,1 1259 200 94 

где Е1, Е2, Е-1, Е-2 – модули упругости монослоя при растяжении и сжатии в 

направлениях осей ортотропии, G12 – модуль упругости при сдвиге в плоскости 

монослоя, ν12 – коэффициент Пуассона, σ1, σ2 – пределы прочности монослоя при 

растяжении, σ-1, σ-2 – пределы прочности монослоя при сжатии, τ12 – предел 

прочности при сдвиге в плоскости монослоя. 

Общий вид модели и граничные условия модели представлен на рисунке 8. 

Узлы в зоне закрепления ограничены по поступательным степеням свободы 

X, Y, Z. К узлам в зоне нагружения приложены вынужденные перемещения вдоль 

длинной стороны модели образца. В модели применен метод послойного 

моделирования. 

 

Рисунок 8 - Общий вид модели и граничные условия модели 

Вид сверху 

Зона закрепления Зона нагружения 

Вид сбоку 
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В расчётах используется модель материала ПКМ 

«MAT_221_ORTHOTROPIC_SIMPLIFIED_DAMAGE», основанная на критерии 

разрушения максимальных деформаций. Согласно используемому критерию [17] 

разрушение наступает, когда одна из компонент деформации, отнесённая к осям 

орторопии, достигает предельного значения, определяемого из испытаний на 

одноосное нагружение и чистый сдвиг: 

 

Здесь  – деформация в направлениях осей ортотропии, – 

деформация сдвига в плоскостях ортотропии, предельная 

деформация монослоя, где α=± («+» соответствует растяжению, «-» – сжатию). 

i=1..3 – соответствующие направления.  

Модель материала MAT_221 основана на том, что зависимость напряжений 

от деформаций в ортотропном слоистом ПКМ имеет три участка (Рисунок 9): 

зона упругого поведения, зона повреждения, зона разрушения.  

 

 
Рисунок 9 – Модель деградации свойств ПКМ  
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По результатам расчёта определены слои, получившие повреждения в 

результате достижения предельного значения согласно критерию разрушения 

[18,19], и значения нагрузки, при которой фиксируется потеря несущей 

способности образца. 

Учитывая различные схемы армирования ортотропных пластин 

наблюдаются различные формы разрушения. Так для образца, с укладкой 

монослоев из 9% слоев по направлению 0°, 73% слоев по направлению 45°, 18% 

слоев по направлению 90° (9/73/18), т.е. состоящей из большого количества 

слоёв с ориентацией 45°, наблюдается отсутствие повреждений поперёк слоёв и 

множественные повреждения от сдвигающих деформаций. А для укладки 

монослоев, состоящей из 44% слоев по направлению 0°, 44% слоев по 

направлению 45°, 12% слоев по направлению 90° (44/44/12), т.е. с большим 

количеством слоёв с ориентацией 0° отмечается наличие повреждений поперёк 

образца и множественные повреждения от сжимающих деформаций. По 

результатам расчетов определена несущая способность образцов с описанными 

схемами армирования: 68 кН для укладки (9/73/18) и 73 кН для укладки 

(44/44/12). На рисунке 10 представлено распределение повреждений монослоев 

образца в ослабленном сечении по различным формам разрушения (сдвиг и 

сжатие монослоёв), где 1 соответствует разрушению элемента монослоя и 

деградации его жесткостных и прочностных характеристик.  
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Образец с укладкой (9/73/18) 
Показатель 

разрушения 

 

 

 

 

Образец с укладкой (44/44/12) 

 

 

 

Рисунок 10 – Повреждение монослоев в образце в ослабленном сечении  

 

Выводы 

Анализ результатов проведенной расчётно-экспериментальной работы 

показывает, что при проектировании элементов конструкций из ортотропного 

материала целесообразно использовать комплексный подход к определению 

несущей способности [20]. Данный подход на примере изучаемого ортотропного 

материала на основе эпоксидной матрицы и высокомодульного углеродного 

волокна (ПКМ) позволяет двукратно увеличить площадь области несущей 

способности (рисунок 11). 

При сдвиге в 

плоскости 

При сжатии вдоль 

образца 

При сжатии поперек 

образца 

При сжатии поперек 

образца 

При сжатии вдоль 

образца 

При сдвиге 
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Рисунок 11 – Область расширения несущей способности соединения на основе 
экспериментальных данных 

 

Принятый подход при расчете несущей способности образцов показал, что 

моделирование эксперимента дает приемлемый уровень погрешности (около 

15%) и может быть использован при проведении дальнейшей работы по оценке 

совместного влияния смятия и проходящей нагрузки на несущую способность 

соединений (рисунок 12).  

 

 

Рисунок 12 – Сравнение результатов испытаний и численного эксперимента  
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