УДК 536.24

Исследование характеристик теплозащитного покрытия аэроупругих тормозных устройств спускаемых в атмосфере планет аппаратов

Алифанов О.М.^{1*}, Иванков А.А.^{2**}, Нетелев А.В.^{1***}, Финченко В.С.²

¹Московский Авиационный Институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия ²Научно-производственное объединение им. С.А. Лавочкина, Московская область,

> Химки, ул. Ленинградская, 24, 141400, Россия *e-mail:O.alifanov@yandex.ru **e-mail:ival@laspace.ru ***e-mail:netelev@mai.ru

Аннотация

Приведена математическая модель, реализованная в программном комплексе (ПК) для определения конструкционных параметров теплозащитных покрытий (ТЗП) аэроупругих, в частности, надувных тормозных устройств (НТУ) спускаемых аппаратов (СА) предназначенных для спуска на поверхности планет с атмосферой. Приведен пример расчета тепловой нагрузки и динамики прогрева абляционного ТЗП.

Ключевые слова: спускаемый аппарат, надувное тормозное устройство, теплозащитное покрытие, траектория, абляционные материалы

Введение

В сфере внимания отечественных [1-8] и зарубежных [9, 10] специалистов, занимающихся проектированием космической техники нового образца, находятся исследования аэротермодинамики перспективных спускаемых в атмосферах планет

аппаратов, для эффективного торможения которых используются аэродинамические и теплозащитные экраны, частично [11, 12, 13] или полностью [14], выполненные в виде аэроупругих конструкций и, в частности, в виде герметичных, надуваемых газом, оболочек.

Одной из основных проблем реализации проектов таких СА с НТУ является создание системы тепловой защиты оболочек НТУ, формирующих лобовой аэродинамический экран (ЛАЭ) спускаемого аппарата. Особенность и основное преимущество такого ЛАЭ над теплозащитными экранами жесткой конструкции заключается в возможности при транспортировке СА с НТУ, в том числе и под обтекателями ракет-носителей, и на борту космического аппарата, укладывать НТУ в компактный объем.

Для оперативного расчета аэротермодинамики СА с НТУ при спуске в атмосфере и для решения основной целевой задачи – определение конструкционных характеристик гибкого теплозащитного покрытия (ГТЗП) его лобовой поверхности целесообразно использовать комплексное математическое описание всех процессов, сопровождающих движения аппарата в атмосфере на всех режимах его обтекания газовым потоком.

Ниже приводятся краткое описание такой комплексной математической модели, указание на используемые численные методы решения ее составных частей и некоторые результаты параметрических расчетов основных аэротермодинамических характеристик спуска СА с НТУ выбранной конфигурации, имеющих различные баллистические параметры входа в атмосферу Земли – скорость и угол.

Математическая модель метода расчета аэротермодинамики СА с НТУ при движении в атмосфере планеты

Математическая модель для расчета аэротермодинамики спускаемого в атмосфере планеты аппарата включает:

- систему уравнений газовой динамики;

- систему уравнений радиационной газовой динамики для расчета радиационного теплового потока в выбранных для расчета точках;

- аналитические и полуэмпирические формулы для расчета величин конвективного теплового потока при гипер- и сверхзвуковых скоростях обтекания СА для ламинарного и турбулентного режимов течения сплошной среды в пограничном слое на его поверхности;

- нестационарное уравнение теплопроводности для определения температуры в выбираемых точках по толщине конструкции ГТЗП;

- уравнения для определения скорости уноса массы абляционного материала ГТЗП и расхода его массы с поверхности ЛАЭ СА;

- систему уравнений движения СА в атмосфере планеты для определения его траекторных параметров под воздействием гравитационной и аэродинамических сил.

Система уравнений газовой динамики включает три основных уравнения:

 $\nabla \cdot \left(\rho \cdot \overline{V} \right) = 0$ $\left(\overline{V} \cdot \nabla \right) \overline{V} + (1/\rho) \nabla P = 0$ - неразрывности

(1)- движения

- энергии
$$\nabla \left[\rho \overline{V} (h + V^2 / 2) + \overline{H} \right] = 0$$
, где $\overline{H} = \int_{0}^{\infty} \overline{H}_{v} dv$

где \overline{V} – вектор скорости газа; ρ – плотность, h = h(P,T) – удельная энтальпия, P – давление и T температура газа; \overline{H}_{v} – вектор монохроматического лучистого теплового потока.

Рисунок 1 - Физическая картина обтекания

На рис. 1 приведена физическая картина, реализуемая при обтекании любого затупленного тела высокоскоростным потоком газа.

Решение задачи обтекания такого тела газовым потоком проводится численным методом [15], являющимся развитием схемы II метода интегральных соотношений Дородницына-Белоцерковского [16] и метода прямых Г.Ф. Теленина [17] в поле течения между ударной волной и поверхностью тела, ограниченном границами ABCD. Это поле течения включает две области – область течения 1 сжатого набегающего газа между ударной волной r_s и линией тангенциального разрыва r_c , отделяющей область 2 течения газов – продуктов разложения абляционного материала на поверхности тела r_w . Область 2 ограничена осью

симметрии поля течения (продольной осью CA) и лучом OB с углом наклона к оси OA – θ_b .

В области 1 в результате решения определяются все газодинамические параметры как функции $P(r,\theta)$ полярной системы координат, а область 2 характеризуется нормальной скоростью V_{in} вдува продуктов разрушения материала с поверхности r_w ГТЗП СА с НТУ, определяющей импульс вдуваемой массы газов во встречный поток, обусловливающий отход линии раздела потоков r_c от поверхности обтекаемого тела.

Система уравнений радиационной газовой динамики в общей тензорной форме для расчета радиационного теплового потока в выбранных для расчета точках имеет вид:

$$\nabla \cdot \Pi_{v} = K_{v} \overline{H}_{v}$$

$$\Pi_{v} = -\frac{4\pi}{3} \left(B_{v} - \frac{1}{4\pi K_{v}} \nabla \cdot \overline{H}_{v} \right) E + D_{v}$$

$$D_{v} = \frac{2}{5K_{v}} \left[\Phi_{v} - \frac{1}{3} \left(\nabla \cdot \overline{H}_{v} \right) E \right]$$

$$\Phi_{v} = \frac{1}{2} \left[\frac{d\overline{H}_{v}}{d\overline{r}} + \left(\frac{d\overline{H}_{v}}{d\overline{r}} \right)^{*} \right]$$

$$B_{v} = \frac{2h_{*}c^{2}v^{3}}{\exp(h_{*}cv/kT) - 1}, \quad K_{v} = K_{v}(P,T)$$

где П_v – симметричный тензор монохроматического излучения; *c* – скорость света в вакууме; h_{*} – постоянная Планка; *k* – постоянная Больцмана; *E* – единичный тензор; Φ_v – симметричная часть производного тензора $d\overline{H}_v/d\overline{r}$ от вектора \overline{H}_v по радиусвектору \overline{r} с компонентами { $d\overline{H}_{vk}/dr_l$ }, *k*,*l* = 1,2,3; ($d\overline{H}_v/d\overline{r}$)^{*} – сопряженный тензор по отношению к $d\overline{H}_{\nu}/d\overline{r}$; D_{ν} – девиатор тензора Π_{ν} . При этом ρ,h,K_{ν} – заданные функции своих аргументов – давления газа *P* и температуры *T*; индекс «*v*» относится к параметрам монохроматического излучения.

Решение системы уравнений (2) проводится с использованием P₁- и P₂приближений метода сферических гармоник [18].

Соотношения для расчета величин конвективного теплового потока при различных режимах обтекания СА с НТУ и для ламинарного и турбулентного режимов течения сплошной среды в пограничном слое на поверхности аппарата в используемой методике приняты в следующих видах для каждого из режимов течения газа в набегающем потоке [19]:

- при обтекании Изделия свободномолекулярным потоком:

при $0 \le \theta \le \pi/2$

$$q = a_{\theta} P_{\infty} \left(\frac{RT_{\infty}}{2\pi\mu} \right)^{0.5} \left[\left(S^2 + \frac{k}{k-1} - \frac{1}{2} \frac{(k+1)}{(k-1)} \frac{T_{w}}{T_{\infty}} \right) \right] \chi(S_{\theta}) - 0.5 \exp(-S_{\theta}^2)$$

$$q = 0 \quad \text{при} \quad \pi/2 \le \theta \le \pi ,$$

$$\text{где} \quad \chi(x) = \exp(-x^2) + \pi^{0.5} x (1 + erf(x)) ;$$

$$erf(x) = 2\pi^{-0.5} \int_{0}^{x} \exp(-t^2) dt - \phi \text{ункция ошибок};$$

$$S = (k/2)^{0.5} M_{\infty} - \text{скоростное отношение};$$

$$S_{\theta} = S \cos(\theta) ;$$

θ – угол падения линии тока к поверхности обтекаемого элемента;

 $a_{e} = (E_{i} - E_{r})/(E_{i} - E_{w})$ коэффициент термической аккомодации, где Ei, Er – энергия соответственно падающих и отраженных молекул, а Ew – энергия отраженных молекул, как если бы все они отражались с максвелловским распределением скоростей, соответствующим температуре поверхности тела Tw

- при обтекании СА потоком газ с переходным режимом течения конвективный тепловой поток при нормальном падении линии тока в точку поверхности элемента конструкции рассчитывается по зависимостям чисел Стантона $St(K^2)$, полученным обобщением большого количества экспериментальных и теоретических данных при обтекании элементов конструкции ОАТУ различной формы. С учетом выражения

$$St = St(K^2) = \frac{q_{0i}}{\rho_{\infty}V_{\infty}(I_{\infty} - I_{w})},$$

где I_{∞} и I_{w} – соответственно энтальпия торможения и энтальпия газа при температуре поверхности ГТЗП НТУ, выражение для конвективного теплового потока в критической точке элемента конструкции используется в виде [19]:

$$q_0 = St \ (K^2) \rho_{\infty} V_{\infty} (I_{\infty} - I_w).$$

Для расчета распределения тепловых потоков по сферической части поверхности НТУ используется аппроксимация работы для ламинарного пограничного слоя на сфере

$$q(\theta) = q_0 [0.55 + 0.45 \cos(2\theta)], \quad 0 \le \theta \le 90^{\circ}.$$

- при сплошном режиме течения расчет конвективных тепловых потоков проводится с помощью конечных соотношений, которые для ламинарного и турбулентного пограничных слоев в расчетной точке поверхности обтекаемого тела имеют вид [20]:

$$q_{L} = K_{L}(\theta) \cdot \rho_{\infty}^{0,5} \cdot R^{-0,5} \cdot V_{\infty}^{3,05} \left(1 - I_{w} / I_{\infty}\right),$$

$$q_{T} = K_{T}(\theta) \cdot \rho_{\infty}^{0,8} \cdot R^{-0,2} \cdot V_{\infty}^{3,3} \left(1 - I_{w} / I_{\infty}\right)$$

где R – характерный линейный размер обтекаемого элемента конструкции, определяется по радиусу эквивалентной сферы, который формируется программным образом с помощью метода эффективной длины, а коэффициенты K_L для ламинарного и K_T для турбулентного пограничных слоев определяются по большому числу экспериментальных, в том числе, и летных данных.

При расчетах вдоль образующей лобовой поверхности СА с НТУ значения тепловых потоков q_L и q_T подсчитываются одновременно, сравниваются между собой, и в качестве расчетного значения выбирается наибольшее из сравниваемых значений.

Приведенные соотношения для удельных тепловых потоков используют предположения о полной каталитичности обтекаемой поверхности и о том, что газ находится в состоянии локального термодинамического равновесия с учетом равновесной диссоциации, ионизации и равновесных химических реакций в высокотемпературном газе.

Сшивка решений на границах различных режимов обтекания проводится программным способом с использованием линейных или кубических сплайнов.

Нестационарное уравнение теплопроводности для определения температуры в выбираемых точках в толщине конструкции ГТЗП используется в виде [21]

$$C\rho_{m}\frac{\partial T_{m}}{\partial t} = \frac{\partial}{\partial x} \left[\lambda(x)\frac{\partial T_{m}}{\partial x}\right] - C_{g}G_{g}\frac{\partial T_{m}}{\partial x} - Q_{d}, \ 0 < x < \delta, \ 0 < t \le t_{f},$$
(3)

где T=T(x, t) – температура материала стенки; C(x), $\rho(x)$ и $\lambda(x)$ соответственно теплоемкость единицы массы, плотность и коэффициент теплопроводности материала соответствующего слоя ГТЗП (с учетом газообразных продуктов разрушения); $C_g=C_g(P,T)$ – теплоемкость единицы массы газообразных продуктов, $G_g=G_g(P,T)$ - объем газа фильтрующегося через точку с координатой x, P – давление газа; x – координата, отсчитываемая в направлении, нормальном к поверхности аппарата, x=0 соответствует стороне, обтекаемой газом; δ – толщина слоя ГТЗП; t и t_f – соответственно текущее и конечное время прогрева материала.

Уравнения для определения линейной скорости уноса и расхода массы абляционного материала с поверхности ГТЗП.

Уравнение линейной скорости уноса массы с поверхности ГТЗП СА с НТУ определяется с помощью выражения

$$V_{d,0} = \frac{q_0 - \varepsilon_{w0} \sigma T^4}{\rho_m I_{ef}}$$
(4)

где q_0 – плотность падающего на поверхность ГТЗП аппарата суммарного теплового потока, ε_w – интегральная степень черноты поверхности ГТЗП, σ – постоянная Стефана-Больцмана, ρ_m – плотность абляционного материала ТЗП, I_{ef} – эффективная энтальпия разрушения абляционного материала ТЗП, определяемая при его испытаниях.

Скорость потери (расхода) уносимой с поверхности ГТЗП СА с НТУ массы разрушаемого материала определяется выражением:

$$\dot{m} = \frac{dm}{dt} = 2\pi\rho_m \left(\int_{0}^{\theta_b} V_d r_w^2(\theta) \sin(\theta) \left(1 + \left(\frac{dr_w}{rd\theta}\right)^2\right)^{0.5} d\theta\right)$$
(5)

Система уравнений движения СА с НТУ в атмосфере Земли для определения его траекторных параметров при воздействии гравитационной и аэродинамических сил принимается в виде:

$$\frac{dV}{dt} = -\sigma_x g_0 \frac{\rho V^2}{2} - g \sin \psi, \quad \frac{dL}{dt} = V \frac{R_{i\bar{e}}}{R} \cos \psi$$

$$\frac{d\psi}{dt} = \sigma_x K g_0 \frac{\rho V}{2} + \left(\frac{V}{R} - \frac{g}{V}\right) \cos \psi, \quad \frac{dH}{dt} = V \sin \psi, \quad (6)$$

$$\sigma_x = \frac{c_{xa}S}{mg}, \quad K = \frac{c_{ya}}{c_{xa}}, \quad g_0 = \gamma \frac{M_{i\bar{e}}}{R_{i\bar{e}}^2}, \quad g_- = g_0 \frac{R_{n\bar{n}}^2}{R^2},$$

Здесь V – скорость движения центра масс СА; θ – угол наклона вектора скорости к местному горизонту; H – высота полета СА над поверхностью планеты; L – дальность полета СА, отсчитываемая вдоль образующей поверхности планеты; σ_x – баллистический параметр; g_0 , g – ускорение силы тяжести соответственно на поверхности планеты и на высоте H; S – площадь миделевого сечения СА с НТУ; m=m(t) – переменная масса аппарата; R_{pl} , $R=R_{pl}$ + H – радиус планеты и расстояние от ее центра до центра масс СА; $c_{xa}=c_{xa}(t)$, c_{ya} – коэффициенты аэродинамических сил лобового сопротивления и подъемной силы СА с НТУ; K – аэродинамическое качество СА; γ – гравитационная постоянная; M_{pl} – масса планеты.

Метод, основанный на совместном решении систем уравнений (1)-(6), позволяет рассчитать газодинамические параметры (скорость, плотность, давление,

температуру) в поле течения сжатого высокотемпературного газа между ударной волной и поверхностью СА с НТУ.

Знание газодинамических параметров позволяет рассчитать изменение плотности конвективного теплового потока в выбранных точках поверхности гибкого теплозащитного покрытия системы теплозащиты СА с НТУ вдоль всей траектории спуска аппарата. Радиационная составляющая суммарного теплового потока определяется решением системы уравнений (2) радиационной газовой динамики.

Окончательными результатами численного решения системы уравнений (1)-(6) являются определяемые изменения по времени вдоль траектории спуска СА с НТУ в атмосфере планеты следующих основных параметров, важных для выбора конструкции ГТЗП СА с НТУ:

- уноса массы абляционного материала ГТЗП в выбранных расчетных точках на поверхности ЛАЭ;

- температуры в различных точках по толщине ГТЗП (обычно в точках соприкосновения соседних слоев ГТЗП);

- температуры несущего корпуса СА, в том числе и оболочки НТУ.

Рисунок 2 – Форма и размеры СА с НТУ

Управляющим расчетным процессом алгоритмом служит система уравнений (6).

Основные результаты параметрических исследований параметров аэротермодинамики СА с НТУ

Далее приводятся результаты параметрических расчетов аэротермодинамики СА (рис. 2) с НТУ массой m_o , совершающего спуск в атмосфере Земли со скоростью входа V_e и углом входа θ_e . Результаты получены для трех значений величин m_o , V_e и θ_e .:

 $m_o=25$ кг, $V_e=7500$, 8000 и 9000 м/с, $\theta_e:=$ минус 5, 10 и 15°.

При расчетах траекторных параметров и аэротермодинамики СА НТУ принято считать, что аппарат в полете сохраняет устойчивое пространственное положение с нулевым углом атаки. В таб. 1 приведена принятая для расчетов зависимость коэффициента аэродинамического сопротивления *C_{xa}* от числа Маха. Таблица 1 - Зависимость коэффициента аэродинамического сопротивления СА с НТУ от числа Маха *M*

M	0.7	0.9	1.2	1.5	2.0	2.5	3.0	3.5	4.0	<i>M</i> ≥ 5
C_{xa}	0.98	1.10	1.24	1.36	1.38	1.37	1.36	1.36	1.36	1.38

В таблице 2 приведены максимальные значения скоростного напора q^*_m , высота H_m , скорость V_m и время t_m , в момент которого это значение достигается при спуске СА с НТУ. Данные таблицы 2 свидетельствуют о том, что скорость входа СА постоянной массы в атмосферу с пологими углами до 5 градусов практически не влияет на максимальное значение механической нагрузки на НТУ.

Вариант	V_e ,	$ heta_{e}$,	q^{*_m} ,	H_m ,	V_m ,	t_m ,
	м/с	град	Па	КМ	м/с	С
1	7500	- 5	3300	60	4800	84
2	7500	- 10	5600	59	4800	46
3	7500	- 15	8200	58	4800	35
4	8000	- 5	3400	61	5100	85
5	8000	- 10	6300	58	5200	50
6	8000	- 15	9100	57	5400	32
7	9000	- 5	3400	63	5800	84
8	9000	- 10	7350	59	5800	44
9	9000	- 15	11000	55	6000	30

Таблица 2 - Максимальная аэродинамическая нагрузка на НТУ СА

При более крутых углах входа аэродинамическая нагрузка на СА при увеличении скорости и угла входа возрастает более интенсивно.

Высота, на которой достигается максимум q^*_m на поверхности НТУ и момент времени ее достижения t_m достаточно слабо зависят от условий входа V_e и θ_e атмосферу.

Высота, на которой достигается максимум величины q^*_m и время ее достижения практически не зависит от скорости V_e , а зависит только от угла входа - чем круче траектория, тем интенсивнее вытормаживается скорость спуска аппарата.

С возрастанием модуля угла входа в 3 раза (от 5 до 15°) нагрузка от давления воздушного потока на поверхность НТУ возрастает, приблизительно, в 3 раза при изменении скорости входа в атмосферу от 7500 до 9000 м/с.

Таким образом, в результате проведенных при подготовке материалов настоящей статьи параметрических расчетов определены: максимальные значения плотности теплового потока q_m ; время достижения τ_m максимального потока q_m ; время теплового воздействия на поверхность аппарата t_{6030} ; суммарное количество тепла *Q_m*, воспринимаемое поверхностью аппарата в точке максимального теплового потока; величина скоростного потока $\rho V^2/2$ в моменты времени начала $t_{\mu a y, \nu h o c a}$ и конца *t*_{прекр.уноса} интенсивного уноса абляционного материала теплозащитного покрытия поверхности НТУ; момент времени, отсчитываемый от входа в Т^{тах} внешн.ЭВТИ максимальной атмосферу, достижения температуры теплоизоляционного слоя; момент времени достижения максимальной температуры $T^{max}_{hec, \kappa ohemp}$ материала герметичной оболочки тора НТУ; суммарная толщина δ_{T3T} наносимого абляционного слоя теплозащитного покрытия СА с НТУ; количество слоев *п* слоев температуростойкой ткани с нанесенным абляционным материалом; толщина *h_i* абляционного материала наносимого на *i*-й слой ткани.

Всего просчитано 9 вариантов изменения параметров, определяющих аэротермодинамику СА с НТУ при спуске из космоса в атмосфере Земли.

В таблицах 3-6 приводятся суммарные результаты проведенных расчетов по определению перечисленных выше параметров.

В таблице 5 приведена сводка результатов расчета тепловой нагрузки q_m и Q_m на теплозащиту НТУ, а также продолжительность интенсивного теплового воздействия t_{6030} газового потока.

Анализ результатов таблицы 5 показывает, что максимальное значение плотности теплового потока q_m возрастает как с увеличением скорости входа V_e CA с HTУ в атмосферу, так и угла входа θ_e . При этом с увеличением скорости входа увеличение величины q_m возрастает менее интенсивно, чем при увеличении угла входа θ_e . Чем более пологий угол входа CA с HTУ в атмосферу тем продолжительнее время воздействия t_{6030} . теплового потока на поверхность HTУ. Соответственно этому возрастает и количество тепла Q_m , воспринимаемого материалами системы тепловой защиты наружной поверхности аппарата.

Таблица 5 – Сводка результатов расчета тепловой нагрузки

NoNo	V_e ,	$ heta_e$,	q_m ,	<i>t</i> _{603∂.} ,	Q_m ,
варианта	м/с	град.°	кВт/м ²	с	кДж/м ²
1		- 5	800	140	32000
2	7500	- 10	1080	80	27000
3		- 15	1290	60	23220
4		- 5	920	140	36800
5	8000	- 10	1300	77	32500
6		- 15	1550	55	27900
7		- 5	1170	141	46800
8	9000	- 10	1810	70	45250
9		- 15	2200	50	39600

Характерным является также то, что время заметного теплового воздействия на аппарат существенно зависит от угла входа в атмосферу и уменьшается почти в три раза при увеличении крутизны траектории вход с 5 до 15 градусов. С увеличением же скорости входа в атмосферу время интенсивного теплового воздействия воздушного потока на аппарат практически не изменяется, находясь в пределах 140 секунд при скорости V_e =7500 м/с, и угле θ_e = -5 градусов, а при θ_e = -15 градусов около 50 секунд.

При выборе необходимой толщины δ слоя абляционного материала задается некоторая его величина, число слоев этого пакета и число слоев ЭВТИ в мате теплоизоляции и рассчитывается прогрев конструкции ГТЗП в характерных точках на поверхности НТУ (1- передняя критическая точка, 2- точка начала сопряжения гибкой защиты охватывающей корпусную часть аппарата и тор НТУ с окружностью этого тора, 3 - серединная точка между первыми двумя).

1 – герметичная оболочка; 2 – теплоизоляционный мат; 3 – чехол мата;

4 – слои теплоизоляционного мата; 5 – прокладки между слоями мата;

6 – теплозащитный пакет; 7 – слои пакета; 8 – слой абляционного материала.

Рисунок 3 – Схема гибкого теплозащитного покрытия герметичной оболочки НТУ Если в результате расчетов выполняются требования по недопустимости превышения температуры на стыке теплозащитного 6 (см. рис. 3) и

теплоизоляционного 2 пакетов, а также на стыке теплоизоляционного пакета с конструктивным элементом СА с НТУ, например, в местах прилегания ГТЗП к жесткой части лобового аэродинамического экрана и к герметичной оболочке 1, то это значение δ и числа слоев пакета и мата принимаются конструктивными.

В таблице 6 приводится сводка полученных результатов расчета распределения в трех точках поверхности СА с НТУ уносимой толщины абляционного материала ГТЗП: в критической точке 1, приходящейся на зону жесткой части лобового аэродинамического экрана аппарата, в точке 3, находящейся посредине между точками 1 и 2 и принадлежащей только поверхности ГТЗП, натянутой между жесткой частью ЛАЭ и тором НТУ, и в точке 3 – точке сопряжения с ГТЗП с окружностью тора (см. рис.2).

Значения параметров в таблице 6: $\Delta \delta_i$ – максимальное значение уносимой массы абляционного материала в каждой из точек (*i*=1, 2 и 3), $t_{Hay..}$ – время начала уноса массы абляционного материала ГТЗП с поверхности НТУ, $t_{кон..}$ – время прекращения уноса массы абляционного материала ГТЗП с поверхности НТУ.

Анализ результатов таблицы 6 показывает, что максимальное значение толщины $\Delta \delta_i$ уносимого абляционного материала приходится на точку 3, т. е. там, где гибкая теплозащита лежит на торовой поверхности герметичной оболочки НТУ. Причем в этой точке уносимая толщина из слоя абляционного материала приблизительно в 1.5-1.6 раза превышает унос в критической точке и это превышение, практически, не зависит ни от скорости, ни от угла входа СА с НТУ в атмосферу Земли.

Таблица 6 – Уносимой толщины абляционного материала

NoNo	V_e ,	$ heta_e$,		$\Delta \delta_i$, мм	t_{Hay} .	<i>t</i> _{кон.}	
вар.	м/с	град.°	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	с	с
1		- 5	1.70	1.55	2.75	28	112
2	7500	- 10	1.30	1.20	2.15	20	68
3		- 15	1.15	1.05	1.85	12	45
4		- 5	1.85	1.75	3.05	32	112
5	8000	- 10	1.45	1.35	2.35	16	64
6		- 15	1.25	1.15	1.95	12	44
7		- 5	2.35	2.15	3.65	28	120
8	9000	- 10	1.60	1.50	2.60	16	64
9		- 15	1.35	1.25	2.15	10	40

Чем более пологий угол входа СА с АТУ в атмосферу тем продолжительнее время уноса ($t_{кон.} - t_{нач.}$) абляционного материала с поверхности теплозащиты НТУ. В соответствии с этим возрастает и количество уносимого материала теплозащиты при пологих углах входа, чем при крутых. Так, например, при средней скорости входа в атмосферу равной 8 км/с унос в точке 3 за 80 секунд при угле входа СА с НТУ массой $m_o = 25$ кг $\theta_e = -5^\circ$ составляет 3.05 мм, то при $\theta_e = -15^\circ -1.95$ мм всего за 32 секунды.

Это свидетельствует о более высокой скорости уноса материала, но продолжительность этого процесса при пологих углах входа более значительная, что и приводит к потере большей толщины теплозащитного покрытия.

В таблице 7 приводятся основные результаты расчетов максимальных значений температуры на стыке теплозащитного пакета с теплоизоляционным

матом T_{3max} , и температуры T_{4max} герметичной оболочки тора НТУ. При этом температура $T_{3max..}$ выбирается из условия $T_{3max..}$ <500°С, а температура на герметичной оболочке в точке З T_{4max} <150°С.

NºNº	V_e ,	$ heta_{e}$,	T_{3max} ,	T_{4max} ,	δ,	n,
вар.	м/с	град.	°C	°C	MM	слои ЭВТИ
1		- 5	500	130	2.8	9
2	7500	- 10	460	110	2.2	7
3		- 15	430	100	1.9	5
4		- 5	500	110	3.1	11
5	8000	- 10	450	105	2.4	9
6		- 15	420	100	2.0	7
7		- 5	500	90	3.7	14
8	9000	- 10	450	75	2.6	9
9		- 15	410	70	2.2	7

Таблица 7 – Максимальный температурный нагрева элементов конструкции НТУ

Анализ результатов таблицы 7 показывает, что для каждого из 9 вариантов расчета выбранная толщина δ абляционного материала температура T_{3max} поверхности теплоизоляционного мата не превышает значения 500°С. Также из неё следует, что выбранное количество *n* слоев ЭВТИ в теплоизоляционном мате предотвращает тепловое разрушение герметической оболочки тора НТУ, так как ее температура T_{4max} ни в одном из 27 вариантов выбранной конструкции не превышает значения 150°С.

В таблицах 8-10 приведены обобщающие результаты проведенных параметрических расчетов в обеспечение выбора параметров конструкции гибкой тепловой защиты, предназначенной для покрытия поверхности надувного тормозного устройства спускаемого аппарата, входящего в атмосферу Земли с различными скоростями и углами входа.

Таблица 8 – Итоговые результаты расчета аэротермодинамических параметров СА с НТУ

Nº Bap	$\tau_m,$	<i>q_m</i> , кВт/м	<i>Q</i> , МЛж/м ²	$\rho V^2/2,$ Πa	$\Delta \delta_{{ m t3fi}},$ MM	Т ^{тах} внешн.ЭВТИ,	Т ^{тах} нес.констр., °С	δ_{m3n} ,
п/п		2		В МОМЕНТ $t_{npekp.yhoca}$ $(t_{нач}, yhoca)$		(t _{достижения} Т ^{тах} внешн.ЭВТИ)	(t _{достижения} Т ^{тах} нес.констр.)	ММ
1	2	3	4	5	6	7	8	9
1	77	803.8	33.94	1852 (114)	2.74	497 (115)	135 (145)	2.8
2	43	1076	25.86	2757 (66.1)	2.16	462 (67.4)	111 (103)	2.2
3	30	1285	21.72	3770 (47.1)	1.85	434 (48.6)	96.7 (99.4)	1.9
4	76	918.5	40.69	1770 (116.3)	3.03	499 (118)	112 (167)	3.1
5	41	1293	29.97	2754 (64.50)	2.31	456 (66)	110 (104)	2.4
6	28	1552	25.10	3840 (45.40)	1.96	429 (47)	95.9 (88)	2.0
7	74	1169	57.37	1606 (123.2)	3.65	500 (126)	84.8 (218)	3.7
8	37	1817	39.47	2781 (61.4)	2.58	445 (65)	77.0 (144)	2.6
9	26	2200	32.41	4009 (42.30)	2.16	412 (45)	70.6 (136)	2.2

В заключение следует отметить, что проведенные параметрические исследования аэротермодинамики носят параметрический характер исследования малогабаритного СА с НТУ для спуска в атмосферу Земли с возможными

условиями входа 7500 м/с $\leq V_e \leq 9000$ м/с и углов входа $5^{\circ} \leq |\theta_e| \leq 15^{\circ}$. Эти результаты могут быть использованы в процессе проектирования для определения аэротермодинамики аналогичного по форме СА с НТУ, не прибегая к проведению расчетов, путем интерполяции данных в приведенных таблицах. Такая необходимость в проектных работах появляется всегда, т.к. баллистические параметры входа в атмосферу неминуемо могут изменяться в поисках оптимального варианта проектируемого изделия.

Библиогрвфический список

1. Землянский Б.А., Иванков А.А., Устинов С.Н., Финченко В.С. Современное состояние вопроса о применении технологии надувных элементов конструкции в изделиях ракетно-космической техники, об использовании надувных тормозных устройств в конструкции спускаемых аппаратов и теплозащитные покрытия этих устройств//Вестник РФФИ № 1(57), январь-март 2008, с. 37-63.

 Алексашкин С.Н., Пичхадзе К.М., Устинов С.Н., Финченко В.С.. О проектах и теплозащите спускаемых аппаратов с надувными тормозными устройствами в России и за рубежом // Тепловые процессы в технике. 2010. Т. 2. № 1. С. 230–240.

3. Алексашкин С.Н., Пичхадзе К.М., Финченко В.С.. Принципы проектирования спускаемых в атмосферах планет аппаратов с надувными тормозными устройствами//Вестник ФГУП «НПО им. С.А. Лавочкина». Космонавтика и ракетостроение, № 2 (13). 2012. с.4-11.

4. Финченко В.С., Пичхадзе К.М. Основы проектирования надувных космических конструкций. Раздел в книге «Проектирование автоматических космических

аппаратов для фундаментальных научных исследований», под ред. Ефанова В.В., Пичхадзе К.М., НПО им. С.А. Лавочкина. М:. 2012. с.466-527.

5. Alifanov O.M., Outchvatov V.I., Pichkhadze K.M. Thermal Protection of Re-entry Vehicles with the Usage of Unflatable Systems// Acta Astronautica. 2003. Vol.53. C. 541-546.

6. Алифанов О.М., Будник С. А., Ненарокомов А. В., Нетелев А. В. Идентификация математических моделей теплопереноса в разлагающих материалах// Тепловые процессы в технике. 2011. Т.3, №8.

 Алифанов О.М., Будник С.А., Михайлов В.В., Ненарокомов А.В.
 Экспериментально-вычислительный комплекс для исследования теплофизических свойств теплотехнических материалов// Тепловые процессы в технике. 2009. Т 1.
 №2. С.49-60.

8. Alifanov O.M., Budnik C.A., Mikhailov V.V., Nenarokomov A.B. An Experimental-Computational System for Materials Thermal Properties Determination and its Application for Spacecraft

Testing // Acta Astronautica». 2007. V..61. P. 341-351.

9. Stephen J. Hughes, Robert A. Dillman, Brett R. Starr, Ryan A. Stephan, Michael C. Lindell, Charles J. Player, and Dr. F. McNeil Cheatwood. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview, *Proceedings of the 18th conference «Aerodynamic Decelerator Systems Technology»*, AIAA Paper 2005-1636, 2005.

10. James N. Moss, Christopher E. Glass, Brian R. Hollis, John W. Van Norman. Low-Density Aerodynamics of the Inflatable Re-entry Vehicle Experiment (IRVE), *Proceedings of 44th AIAA Aerospace Meeting and Exhibit*, AIAA Paper 2006-1189, 2006. 11. Алексашкин С.Н., Иванков А.А., Финченко В.С.. Анализ температурного состояния надувного тормозного устройства по результатам лётно-конструкторских испытаний спускаемого аппарата «Демонстратор-2Р» для определения версии его нештатного полёта. Журнал «Тепловые процессы в технике». Том 1, № 6, 2009, с. 253-258.

Алифанов О.М., Будник С.А., Нетелев А.В. Патент РФ на полезную модель
 №81162 10.03.2009 В64G 1l62 «Тормозное устройство для спуска в атмосфере планет». Заявка №2008140907/22, 15.10.2008 RU.

 Алифанов О.М., Будник С.А., Нетелев А.В. Патент РФ на полезную модель
 №132423 18.03.2013 В64G 1l62 «Развертываемое тормозное устройство для спуска в атмосфере планет».

14. Финченко В.С., Пичхадзе К.М., Иванков А.А. Патент РФ № 82679 на полезную модель «Спускаемый аппарат для доставки грузов с пилотируемой орбитальной станции на поверхность Земли». Приоритет 25 декабря 2008 г. Зарегистрировано в Госреестре 10.05 2009 г.

15. Голомазов М.М., Иванков А.А. О постановке граничных условий на ударной волне при обтекании затупленных тел гиперзвуковым потоком газа // Вестник ФГУП «НПО им. С.А. Лавочкина», 2012. № 1(12). С. 38-45.

 Белоцерковский О.М., Булекбаев А., Голомазов М.М. и др. Обтекание затупленных тел сверхзвуковым потоком газа // Под ред. О.М. Белоцерковского. – М.: Изд-во ВЦ АН СССР, 1967. – 401 с.

 Теленин Г.Ф., Тиняков Г.П. Метод расчета пространственного обтекания тел с отошедшей ударной волной // Докл. АН СССР. – 1964. – 154, № 5 – С. 1056-1058.

Борисов В.М., Иванков А.А. Расчет переноса лучистой энергии при гиперзвуковом обтекании затупленных тел с использованием P₁- и P₂- приближений метода сферических гармоник // Журн. вычислит. математики и мат. физики. – 1992.
 Т. 32. – № 6. – С. 952 – 966.

19. Иванков А.А. О численном решении задачи прогрева многослойной теплозащиты спускаемого аппарата с учетом уноса массы внешних и внутренних слоев покрытия // Журн. вычислит. математики и мат. физики. 2005. Т. 45. № 7. С. 1279 – 1288.

 Основы теории полета космических аппаратов / Под ред. Г.С. Нариманова и М.К. Тихонравова. – М.: Машиностроение, 1972. 608с.

Работа выполнена в Московском авиационном институте (национальном исследовательском университете) при финансовой поддержке работ по проекту Министерства образования и науки «Инновационный спускаемый аппарат с орбиты, аппарат-демонстратор внедрения аэроупругих развертываемых при полете в космосе и в атмосфере элементов конструкции в космическую технику».