УДК 536.24

Исследование характеристик теплозащитного покрытия аэроупругих тормозных устройств спускаемых в атмосфере планет аппаратов

Алифанов О.М.^{1*}, Иванков А.А.^{2**}, Нетелев А.В.^{1***}, Финченко В.С.²

¹Московский Авиационный Институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия ²Научно-производственное объединение им. С.А. Лавочкина, Московская область,

Химки, ул. Ленинградская, 24, 141400, Россия

*e-mail:O.alifanov@yandex.ru

**e-mail:ival@laspace.ru

***e-mail:netelev@mai.ru

Аннотация

Приведена математическая модель, реализованная в программном комплексе (ПК) для определения конструкционных параметров теплозащитных покрытий (ТЗП) аэроупругих, в частности, надувных тормозных устройств (НТУ) спускаемых аппаратов (СА) предназначенных для спуска на поверхности планет с атмосферой. Приведен пример расчета тепловой нагрузки и динамики прогрева абляционного ТЗП.

Ключевые слова:спускаемый аппарат, надувное тормозное устройство, теплозащитное покрытие, траектория, абляционные материалы

Ввеление

В сфере внимания отечественных [1-8] и зарубежных [9, 10] специалистов, занимающихся проектированием космической техники нового образца, находятся исследования аэротермодинамики перспективных спускаемых в атмосферах планет

аппаратов, для эффективного торможения которых используются аэродинамические и теплозащитные экраны, частично [11, 12, 13] или полностью [14], выполненные в виде аэроупругих конструкций и, в частности, в виде герметичных, надуваемых газом, оболочек.

Одной из основных проблем реализации проектов таких СА с НТУ является создание системы тепловой защиты оболочек НТУ, формирующих лобовой аэродинамический экран (ЛАЭ) спускаемого аппарата. Особенность и основное преимущество такого ЛАЭ над теплозащитными экранами жесткой конструкции заключается в возможности при транспортировке СА с НТУ, в том числе и под обтекателями ракет-носителей, и на борту космического аппарата, укладывать НТУ в компактный объем.

Для оперативного расчета аэротермодинамики СА с НТУ при спуске в атмосфере и для решения основной целевой задачи – определение конструкционных характеристик гибкого теплозащитного покрытия (ГТЗП) его лобовой поверхности - целесообразно использовать комплексное математическое описание всех процессов, сопровождающих движения аппарата в атмосфере на всех режимах его обтекания газовым потоком.

Ниже приводятся краткое описание такой комплексной математической модели, указание на используемые численные методы решения ее составных частей и некоторые результаты параметрических расчетов основных аэротермодинамических характеристик спуска СА с НТУ выбранной конфигурации, имеющих различные баллистические параметры входа в атмосферу Земли – скорость и угол.

Математическая модель метода расчета аэротермодинамики CA с HTУ при движении в атмосфере планеты

Математическая модель для расчета аэротермодинамики спускаемого в атмосфере планеты аппарата включает:

- систему уравнений газовой динамики;
- систему уравнений радиационной газовой динамики для расчета радиационного теплового потока в выбранных для расчета точках;
- аналитические и полуэмпирические формулы для расчета величин конвективного теплового потока при гипер- и сверхзвуковых скоростях обтекания СА для ламинарного и турбулентного режимов течения сплошной среды в пограничном слое на его поверхности;
- нестационарное уравнение теплопроводности для определения температуры в выбираемых точках по толщине конструкции ГТЗП;
- уравнения для определения скорости уноса массы абляционного материала ГТЗП и расхода его массы с поверхности ЛАЭ СА;
- систему уравнений движения CA в атмосфере планеты для определения его траекторных параметров под воздействием гравитационной и аэродинамических сил.

Система уравнений газовой динамики включает три основных уравнения:

- неразрывности
$$\nabla \cdot (\rho \cdot \overline{V}) = 0$$

- движения
$$(\overline{V} \cdot \nabla) \overline{V} + (1/\rho) \nabla P = 0$$
 (1)

- энергии
$$\nabla \left[\rho \overline{V} \left(h + V^2 / 2 \right) + \overline{H} \right] = 0$$
 , где $\overline{H} = \int\limits_0^\infty \overline{H}_V dV$

где \overline{V} — вектор скорости газа; ρ — плотность, h = h(P,T) — удельная энтальпия, P — давление и T температура газа; \overline{H}_V — вектор монохроматического лучистого теплового потока.

Рисунок 1 - Физическая картина обтекания

На рис. 1 приведена физическая картина, реализуемая при обтекании любого затупленного тела высокоскоростным потоком газа.

Решение задачи обтекания такого тела газовым потоком проводится численным методом [15], являющимся развитием схемы II метода интегральных соотношений Дородницына-Белоцерковского [16] и метода прямых Г.Ф. Теленина [17] в поле течения между ударной волной и поверхностью тела, ограниченном границами ABCD. Это поле течения включает две области – область течения 1 сжатого набегающего газа между ударной волной r_s и линией тангенциального разрыва r_c , отделяющей область 2 течения газов – продуктов разложения абляционного материала на поверхности тела r_w . Область 2 ограничена осью

симметрии поля течения (продольной осью CA) и лучом OB с углом наклона к оси $\mathrm{OA} - \theta_{\scriptscriptstyle h} \,.$

В области 1 в результате решения определяются все газодинамические параметры как функции $P(r,\theta)$ полярной системы координат, а область 2 характеризуется нормальной скоростью V_{in} вдува продуктов разрушения материала с поверхности r_{iv} ГТЗП СА с НТУ, определяющей импульс вдуваемой массы газов во встречный поток, обусловливающий отход линии раздела потоков r_{c} от поверхности обтекаемого тела.

Система уравнений радиационной газовой динамики в общей тензорной форме для расчета радиационного теплового потока в выбранных для расчета точках имеет вид:

$$\begin{split} \nabla \cdot \Pi_{v} &= K_{v} \overline{H}_{v} \\ \Pi_{v} &= -\frac{4\pi}{3} \left(\mathbf{B}_{v} - \frac{1}{4\pi K_{v}} \nabla \cdot \overline{H}_{v} \right) E + D_{v} \\ D_{v} &= \frac{2}{5K_{v}} \left[\Phi_{v} - \frac{1}{3} \left(\nabla \cdot \overline{H}_{v} \right) E \right] \\ \Phi_{v} &= \frac{1}{2} \left[\frac{d\overline{H}_{v}}{d\overline{r}} + \left(\frac{d\overline{H}_{v}}{d\overline{r}} \right)^{*} \right] \end{split}$$

$$B_{\nu} = \frac{2h_{*}c^{2}\nu^{3}}{\exp(h_{*}c\nu/kT)-1}, \ K_{\nu} = K_{\nu}(P,T)$$

где Π_v — симметричный тензор монохроматического излучения; c — скорость света в вакууме; h_* — постоянная Планка; k — постоянная Больцмана; E — единичный тензор; Φ_v — симметричная часть производного тензора $d\overline{H}_v/d\overline{r}$ от вектора \overline{H}_v по радиусвектору \overline{r} с компонентами $\{d\overline{H}_{vk}/dr_l\}$, k,l=1,2,3; $(d\overline{H}_v/d\overline{r})^*$ — сопряженный тензор по

отношению к $d\overline{H}_{v}/d\overline{r}$; D_{v} — девиатор тензора Π_{v} . При этом ρ,h,K_{v} — заданные функции своих аргументов — давления газа P и температуры T; индекс «v» относится к параметрам монохроматического излучения.

Решение системы уравнений (2) проводится с использованием P_1 - и P_2 - приближений метода сферических гармоник [18].

Соотношения для расчета величин конвективного теплового потока при различных режимах обтекания СА с НТУ и для ламинарного и турбулентного режимов течения сплошной среды в пограничном слое на поверхности аппарата в используемой методике приняты в следующих видах для каждого из режимов течения газа в набегающем потоке [19]:

- при обтекании Изделия свободномолекулярным потоком: $\mbox{при } 0 \leq \theta \leq \pi/2$

$$q = a_e P_\infty \left(\frac{RT_\infty}{2\pi\mu}\right)^{0.5} \left[\left(S^2 + \frac{k}{k-1} - \frac{1}{2} \frac{(k+1)}{(k-1)} \frac{T_w}{T_\infty}\right) \right] \chi(S_\theta) - 0.5 \exp(-S_\theta^2)$$

$$q = 0 \quad \text{при} \quad \pi/2 \le \theta \le \pi \; ,$$

$$\text{где} \quad \chi(x) = \exp(-x^2) + \pi^{0.5} \chi(1 + erf(x)) \; ;$$

$$erf(x) = 2\pi^{-0.5} \int_0^x \exp(-t^2) dt - \text{функция ошибок};$$

$$S = (k/2)^{0.5} M_\infty - \text{скоростное отношение};$$

$$S_\theta = S \cos(\theta) \; ;$$

 θ – угол падения линии тока к поверхности обтекаемого элемента;

 $a_{s}=(E_{i}-E_{r})/(E_{i}-E_{w})$ коэффициент термической аккомодации, где Ei, Er – энергия соответственно падающих и отраженных молекул, а Ew – энергия отраженных молекул, как если бы все они отражались с максвелловским распределением скоростей, соответствующим температуре поверхности тела Tw

- при обтекании СА потоком газ с переходным режимом течения конвективный тепловой поток при нормальном падении линии тока в точку поверхности элемента конструкции рассчитывается по зависимостям чисел Стантона $St(K^2)$, полученным обобщением большого количества экспериментальных и теоретических данных при обтекании элементов конструкции ОАТУ различной формы. С учетом выражения

$$St = St(K^2) = \frac{q_{0i}}{\rho_{\infty} V_{\infty} (I_{\infty} - I_{w})},$$

где I_{∞} и I_{w} — соответственно энтальпия торможения и энтальпия газа при температуре поверхности ГТЗП НТУ, выражение для конвективного теплового потока в критической точке элемента конструкции используется в виде [19]:

$$q_0 = St (K^2) \rho_{\infty} V_{\infty} (I_{\infty} - I_{w}).$$

Для расчета распределения тепловых потоков по сферической части поверхности НТУ используется аппроксимация работы для ламинарного пограничного слоя на сфере

$$q(\theta) = q_0[0.55 + 0.45\cos(2\theta)], \quad 0 \le \theta \le 90^{\circ}.$$

- при сплошном режиме течения расчет конвективных тепловых потоков проводится с помощью конечных соотношений, которые для ламинарного и турбулентного пограничных слоев в расчетной точке поверхности обтекаемого тела имеют вид [20]:

$$q_{L} = K_{L}(\theta) \cdot \rho_{\infty}^{0.5} \cdot R^{-0.5} \cdot V_{\infty}^{3.05} (1 - I_{w} / I_{\infty}),$$

$$q_{T} = K_{T}(\theta) \cdot \rho_{\infty}^{0.8} \cdot R^{-0.2} \cdot V_{\infty}^{3.3} (1 - I_{w} / I_{\infty})$$

где R — характерный линейный размер обтекаемого элемента конструкции, определяется по радиусу эквивалентной сферы, который формируется программным образом с помощью метода эффективной длины, а коэффициенты K_L для ламинарного и K_T для турбулентного пограничных слоев определяются по большому числу экспериментальных, в том числе, и летных данных.

При расчетах вдоль образующей лобовой поверхности СА с НТУ значения тепловых потоков q_L и q_T подсчитываются одновременно, сравниваются между собой, и в качестве расчетного значения выбирается наибольшее из сравниваемых значений.

Приведенные соотношения для удельных тепловых потоков используют предположения о полной каталитичности обтекаемой поверхности и о том, что газ находится в состоянии локального термодинамического равновесия с учетом равновесной диссоциации, ионизации и равновесных химических реакций в высокотемпературном газе.

Сшивка решений на границах различных режимов обтекания проводится программным способом с использованием линейных или кубических сплайнов.

Нестационарное уравнение теплопроводности для определения температуры в выбираемых точках в толщине конструкции ГТЗП используется в виде [21]

$$C\rho_{m} \frac{\partial T_{m}}{\partial t} = \frac{\partial}{\partial x} \left[\lambda(x) \frac{\partial T_{m}}{\partial x} \right] - C_{g} G_{g} \frac{\partial T_{m}}{\partial x} - Q_{d}, \ 0 < x < \delta, \ 0 < t \le t_{f}, \tag{3}$$

где T=T(x,t) — температура материала стенки; C(x), $\rho(x)$ и $\lambda(x)$ соответственно теплоемкость единицы массы, плотность и коэффициент теплопроводности материала соответствующего слоя ГТЗП (с учетом газообразных продуктов разрушения); $C_g=C_g(P,T)$ — теплоемкость единицы массы газообразных продуктов, $G_g=G_g(P,T)$ — объем газа фильтрующегося через точку с координатой x, P — давление газа; x — координата, отсчитываемая в направлении, нормальном к поверхности аппарата, x=0 соответствует стороне, обтекаемой газом; δ — толщина слоя ГТЗП; t и t_f — соответственно текущее и конечное время прогрева материала.

Уравнения для определения линейной скорости уноса и расхода массы абляционного материала с поверхности ГТЗП.

Уравнение линейной скорости уноса массы с поверхности ГТЗП СА с НТУ определяется с помощью выражения

$$V_{d,0} = \frac{q_0 - \varepsilon_{w0} \sigma T^4}{\rho_m I_{ef}} \tag{4}$$

где q_0 – плотность падающего на поверхность ГТЗП аппарата суммарного теплового потока, ε_w – интегральная степень черноты поверхности ГТЗП, σ – постоянная Стефана-Больцмана, ρ_m – плотность абляционного материала ТЗП, I_{ef} – эффективная энтальпия разрушения абляционного материала ТЗП, определяемая при его испытаниях.

Скорость потери (расхода) уносимой с поверхности ГТЗП СА с НТУ массы разрушаемого материала определяется выражением:

$$\dot{m} = \frac{dm}{dt} = 2\pi \rho_m \left(\int_0^{\theta_b} V_d r_w^2(\theta) \sin(\theta) \left(1 + \left(\frac{dr_w}{rd\theta} \right)^2 \right)^{0.5} d\theta \right)$$
 (5)

Система уравнений движения СА с НТУ в атмосфере Земли для определения его траекторных параметров при воздействии гравитационной и аэродинамических сил принимается в виде:

$$\frac{dV}{dt} = -\sigma_x g_0 \frac{\rho V^2}{2} - g \sin \psi, \quad \frac{dL}{dt} = V \frac{R_{i\bar{\nu}}}{R} \cos \psi$$

$$\frac{d\psi}{dt} = \sigma_x K g_0 \frac{\rho V}{2} + \left(\frac{V}{R} - \frac{g}{V}\right) \cos \psi, \quad \frac{dH}{dt} = V \sin \psi,$$

$$\sigma_x = \frac{c_{xa} S}{mg}, \quad K = \frac{c_{ya}}{c_{ya}}, \quad g_0 = \gamma \frac{M_{i\bar{\nu}}}{R_{i\bar{\nu}}^2}, \quad g = g_0 \frac{R_{nn}^2}{R^2},$$
(6)

Здесь V — скорость движения центра масс CA; θ — угол наклона вектора скорости к местному горизонту; H — высота полета CA над поверхностью планеты; L — дальность полета CA, отсчитываемая вдоль образующей поверхности планеты; σ_{x} — баллистический параметр; g_{0} , g — ускорение силы тяжести соответственно на поверхности планеты и на высоте H; S — площадь миделевого сечения CA с HTУ; m=m(t) — переменная масса аппарата; R_{pl} , R= R_{pl} +H— радиус планеты и расстояние от ее центра до центра масс CA; c_{xa} = $c_{xa}(t)$, c_{ya} — коэффициенты аэродинамических сил лобового сопротивления и подъемной силы CA с HTУ; K — аэродинамическое качество CA; γ — гравитационная постоянная; M_{pl} — масса планеты.

Метод, основанный на совместном решении систем уравнений (1)-(6), позволяет рассчитать газодинамические параметры (скорость, плотность, давление,

температуру) в поле течения сжатого высокотемпературного газа между ударной волной и поверхностью CA с HTУ.

Знание газодинамических параметров позволяет рассчитать изменение плотности конвективного теплового потока в выбранных точках поверхности гибкого теплозащитного покрытия системы теплозащиты СА с НТУ вдоль всей траектории спуска аппарата. Радиационная составляющая суммарного теплового потока определяется решением системы уравнений (2) радиационной газовой динамики.

Окончательными результатами численного решения системы уравнений (1)- (6) являются определяемые изменения по времени вдоль траектории спуска СА с НТУ в атмосфере планеты следующих основных параметров, важных для выбора конструкции ГТЗП СА с НТУ:

- уноса массы абляционного материала ГТЗП в выбранных расчетных точках на поверхности ЛАЭ;
- температуры в различных точках по толщине ГТЗП (обычно в точках соприкосновения соседних слоев ГТЗП);
 - температуры несущего корпуса СА, в том числе и оболочки НТУ.

Рисунок 2 – Форма и размеры СА с НТУ

Управляющим расчетным процессом алгоритмом служит система уравнений (6).

Основные результаты параметрических исследований параметров аэротермодинамики CA с HTУ

Далее приводятся результаты параметрических расчетов аэротермодинамики СА (рис. 2) с НТУ массой m_o , совершающего спуск в атмосфере Земли со скоростью входа V_e и углом входа θ_e . Результаты получены для трех значений величин m_o , V_e и θ_e .:

 m_o =25 кг, V_e =7500, 8000 и 9000 м/с, θ_e := минус 5, 10 и 15°.

При расчетах траекторных параметров и аэротермодинамики СА НТУ принято считать, что аппарат в полете сохраняет устойчивое пространственное положение с нулевым углом атаки. В таб. 1 приведена принятая для расчетов зависимость коэффициента аэродинамического сопротивления C_{xa} от числа Маха.

Таблица 1 - Зависимость коэффициента аэродинамического сопротивления СА с HTУ от числа Маха M

M	0.7	0.9	1.2	1.5	2.0	2.5	3.0	3.5	4.0	<i>M</i> ≥ 5
C_{xa}	0.98	1.10	1.24	1.36	1.38	1.37	1.36	1.36	1.36	1.38

В таблице 2 приведены максимальные значения скоростного напора q^*_m , высота H_m , скорость V_m и время t_m , в момент которого это значение достигается при спуске СА с НТУ. Данные таблицы 2 свидетельствуют о том, что скорость входа СА постоянной массы в атмосферу с пологими углами до 5 градусов практически не влияет на максимальное значение механической нагрузки на НТУ.

Таблица 2 - Максимальная аэродинамическая нагрузка на НТУ СА

Вариант	V_e ,	$ heta_e$,	q^*_m ,	H_m ,	V_m ,	t_m ,
	м/с	град	Па	КМ	м/с	С
1	7500	- 5	3300	60	4800	84
2	7500	- 10	5600	59	4800	46
3	7500	- 15	8200	58	4800	35
4	8000	- 5	3400	61	5100	85
5	8000	- 10	6300	58	5200	50
6	8000	- 15	9100	57	5400	32
7	9000	- 5	3400	63	5800	84
8	9000	- 10	7350	59	5800	44
9	9000	- 15	11000	55	6000	30

При более крутых углах входа аэродинамическая нагрузка на СА при увеличении скорости и угла входа возрастает более интенсивно.

Высота, на которой достигается максимум q^*_m на поверхности НТУ и момент времени ее достижения t_m достаточно слабо зависят от условий входа V_e и θ_e атмосферу.

Высота, на которой достигается максимум величины q^*_m и время ее достижения практически не зависит от скорости V_e , а зависит только от угла входа - чем круче траектория, тем интенсивнее вытормаживается скорость спуска аппарата.

С возрастанием модуля угла входа в 3 раза (от 5 до 15°) нагрузка от давления воздушного потока на поверхность НТУ возрастает, приблизительно, в 3 раза при изменении скорости входа в атмосферу от 7500 до 9000 м/с.

Таким образом, в результате проведенных при подготовке материалов настоящей статьи параметрических расчетов определены: максимальные значения плотности теплового потока q_m ; время достижения τ_m максимального потока q_m ; время теплового воздействия на поверхность аппарата t_{6030} ; суммарное количество тепла Q_m , воспринимаемое поверхностью аппарата в точке максимального теплового потока; величина скоростного потока $\rho V^2/2$ в моменты времени начала $t_{\text{нач. уноса}}$ и конца $t_{npekp,vhoca}$ интенсивного уноса абляционного материала теплозащитного покрытия поверхности НТУ; момент времени, отсчитываемый от входа в максимальной атмосферу, достижения температуры теплоизоляционного слоя; момент времени достижения максимальной температуры $T^{max}_{hec. \kappa o h c m p}$ материала герметичной оболочки тора НТУ; суммарная толщина $\delta_{T3\Pi}$ наносимого абляционного слоя теплозащитного покрытия СА с НТУ; количество слоев n слоев температуростойкой ткани с нанесенным абляционным материалом; толщина h_i абляционного материала наносимого на i-й слой ткани.

Всего просчитано 9 вариантов изменения параметров, определяющих аэротермодинамику СА с НТУ при спуске из космоса в атмосфере Земли.

В таблицах 3-6 приводятся суммарные результаты проведенных расчетов по определению перечисленных выше параметров.

В таблице 5 приведена сводка результатов расчета тепловой нагрузки q_m и Q_m на теплозащиту НТУ, а также продолжительность интенсивного теплового воздействия t_{6030} газового потока.

Анализ результатов таблицы 5 показывает, что максимальное значение плотности теплового потока q_m возрастает как с увеличением скорости входа V_e СА с НТУ в атмосферу, так и угла входа θ_e . При этом с увеличением скорости входа увеличение величины q_m возрастает менее интенсивно, чем при увеличении угла входа θ_e . Чем более пологий угол входа СА с НТУ в атмосферу тем продолжительнее время воздействия t_{6030} теплового потока на поверхность НТУ. Соответственно этому возрастает и количество тепла Q_m , воспринимаемого материалами системы тепловой защиты наружной поверхности аппарата.

Таблица 5 – Сводка результатов расчета тепловой нагрузки

N <u>o</u> No	V_e ,	$ heta_{\!e}$,	q_m ,	$t_{603\partial}$.,	Q_m ,
варианта	м/с	град.°	кВт/м ²	c	кДж/м ²
1		-5	800	140	32000
2	7500	- 10	1080	80	27000
3		– 15	1290	60	23220
4		- 5	920	140	36800
5	8000	– 10	1300	77	32500
6		– 15	1550	55	27900
7		- 5	1170	141	46800
8	9000	- 10	1810	70	45250
9		– 15	2200	50	39600

Характерным является также то, что время заметного теплового воздействия на аппарат существенно зависит от угла входа в атмосферу и уменьшается почти в три раза при увеличении крутизны траектории вход с 5 до 15 градусов. С увеличением же скорости входа в атмосферу время интенсивного теплового воздействия воздушного потока на аппарат практически не изменяется, находясь в пределах 140 секунд при скорости V_e =7500 м/с, и угле θ_e = –5 градусов, а при θ_e = –15 градусов около 50 секунд.

При выборе необходимой толщины δ слоя абляционного материала задается некоторая его величина, число слоев этого пакета и число слоев ЭВТИ в мате теплоизоляции и рассчитывается прогрев конструкции ГТЗП в характерных точках на поверхности НТУ (1- передняя критическая точка, 2- точка начала сопряжения гибкой защиты охватывающей корпусную часть аппарата и тор НТУ с окружностью этого тора, 3 - серединная точка между первыми двумя).

- 1 герметичная оболочка; 2 теплоизоляционный мат; 3 чехол мата;
- 4 слои теплоизоляционного мата; 5 прокладки между слоями мата;
- 6 теплозащитный пакет; 7 слои пакета; 8 слой абляционного материала.

Рисунок 3 – Схема гибкого теплозащитного покрытия герметичной оболочки НТУ Если в результате расчетов выполняются требования по недопустимости превышения температуры на стыке теплозащитного 6 (см. рис. 3) и теплоизоляционного 2 пакетов, а также на стыке теплоизоляционного пакета с конструктивным элементом СА с НТУ, например, в местах прилегания ГТЗП к жесткой части лобового аэродинамического экрана и к герметичной оболочке 1, то это значение δ и числа слоев пакета и мата принимаются конструктивными.

В таблице 6 приводится сводка полученных результатов расчета распределения в трех точках поверхности СА с НТУ уносимой толщины абляционного материала ГТЗП: в критической точке 1, приходящейся на зону жесткой части лобового аэродинамического экрана аппарата, в точке 3, находящейся посредине между точками 1 и 2 и принадлежащей только поверхности ГТЗП, натянутой между жесткой частью ЛАЭ и тором НТУ, и в точке 3 – точке сопряжения с ГТЗП с окружностью тора (см. рис.2).

Значения параметров в таблице 6: $\Delta \delta_i$ — максимальное значение уносимой массы абляционного материала в каждой из точек (i=1, 2 и 3), $t_{\text{нач..}}$ — время начала уноса массы абляционного материала ГТЗП с поверхности НТУ, $t_{\text{кон..}}$ — время прекращения уноса массы абляционного материала ГТЗП с поверхности НТУ.

Анализ результатов таблицы 6 показывает, что максимальное значение толщины $\Delta \delta_i$ уносимого абляционного материала приходится на точку 3, т. е. там, где гибкая теплозащита лежит на торовой поверхности герметичной оболочки НТУ. Причем в этой точке уносимая толщина из слоя абляционного материала приблизительно в 1.5-1.6 раза превышает унос в критической точке и это превышение, практически, не зависит ни от скорости, ни от угла входа СА с НТУ в атмосферу Земли.

Таблица 6 – Уносимой толщины абляционного материала

N_0N_0	V_e ,	$ heta_{e}$,		$\Delta\delta_i$, mm	$t_{\scriptscriptstyle HAY}$.	$t_{\kappa o H.}$	
вар.	м/с	град.°	<i>i</i> =1	i=2	i=3	c	c
1		- 5	1.70	1.55	2.75	28	112
2	7500	- 10	1.30	1.20	2.15	20	68
3		- 15	1.15	1.05	1.85	12	45
4		-5	1.85	1.75	3.05	32	112
5	8000	- 10	1.45	1.35	2.35	16	64
6		- 15	1.25	1.15	1.95	12	44
7		- 5	2.35	2.15	3.65	28	120
8	9000	- 10	1.60	1.50	2.60	16	64
9		- 15	1.35	1.25	2.15	10	40

Чем более пологий угол входа СА с АТУ в атмосферу тем продолжительнее время уноса ($t_{кон.} - t_{нач.}$) абляционного материала с поверхности теплозащиты НТУ. В соответствии с этим возрастает и количество уносимого материала теплозащиты при пологих углах входа, чем при крутых. Так, например, при средней скорости входа в атмосферу равной 8 км/с унос в точке 3 за 80 секунд при угле входа СА с НТУ массой m_o =25 кг θ_e = -5° составляет 3.05 мм, то при θ_e = -15° -1.95 мм всего за 32 секунды.

Это свидетельствует о более высокой скорости уноса материала, но продолжительность этого процесса при пологих углах входа более значительная, что и приводит к потере большей толщины теплозащитного покрытия.

В таблице 7 приводятся основные результаты расчетов максимальных значений температуры на стыке теплозащитного пакета с теплоизоляционным

матом T_{3max} , и температуры T_{4max} герметичной оболочки тора НТУ. При этом температура $T_{3max.}$ выбирается из условия $T_{3max.}$ <500°C, а температура на герметичной оболочке в точке 3 T_{4max} <150°C.

Таблица 7 – Максимальный температурный нагрева элементов конструкции НТУ

N_0N_0	V_e ,	$ heta_e$,	T_{3max} ,	T_{4max} ,	δ ,	n,
вар.	м/с	град.	°C	°C	ММ	слои ЭВТИ
1		-5	500	130	2.8	9
2	7500	- 10	460	110	2.2	7
3		– 15	430	100	1.9	5
4		-5	500	110	3.1	11
5	8000	- 10	450	105	2.4	9
6		- 15	420	100	2.0	7
7		-5	500	90	3.7	14
8	9000	- 10	450	75	2.6	9
9		– 15	410	70	2.2	7

Анализ результатов таблицы 7 показывает, что для каждого из 9 вариантов расчета выбранная толщина δ абляционного материала температура T_{3max} поверхности теплоизоляционного мата не превышает значения 500°С. Также из неё следует, что выбранное количество n слоев ЭВТИ в теплоизоляционном мате предотвращает тепловое разрушение герметической оболочки тора НТУ, так как ее температура T_{4max} ни в одном из 27 вариантов выбранной конструкции не превышает значения 150°С.

В таблицах 8-10 приведены обобщающие результаты проведенных параметрических расчетов в обеспечение выбора параметров конструкции гибкой тепловой защиты, предназначенной для покрытия поверхности надувного тормозного устройства спускаемого аппарата, входящего в атмосферу Земли с различными скоростями и углами входа.

Таблица 8 – Итоговые результаты расчета аэротермодинамических параметров CA с HTУ

No	I _			2V ² /2	A S	T ^{max}	T ^{max}	2
	τ_m ,	q_m ,	Q,	$\rho V^2/2$,	$\Delta\delta_{\scriptscriptstyle m T3\Pi},$	oneum.SB111)	- nec.koncmp.s	δ_{m3n} ,
вар.	С	кВт/м	M Дж $/$ м 2	Па	MM	°C	°C	
п/п		_		в момент		$(t_{\text{достижения}})$	$(t_{\partial ocmu > cehu Я})$	MM
				$t_{прекр.уноса}$		$T^{max}_{$ внешн.ЭВТИ)	$T^{max}_{$ нес.констр.)	
				$(t_{hay.yhoca})$				
1	2	3	4	5	6	7	8	9
1	77	803.8	33.94	1852 (114)	2.74	497 (115)	135 (145)	2.8
2	43	1076	25.86	2757 (66.1)	2.16	462 (67.4)	111 (103)	2.2
3	30	1285	21.72	3770 (47.1)	1.85	434 (48.6)	96.7 (99.4)	1.9
4	76	918.5	40.69	1770 (116.3)	3.03	499 (118)	112 (167)	3.1
5	41	1293	29.97	2754 (64.50)	2.31	456 (66)	110 (104)	2.4
6	28	1552	25.10	3840 (45.40)	1.96	429 (47)	95.9 (88)	2.0
7	74	1169	57.37	1606 (123.2)	3.65	500 (126)	84.8 (218)	3.7
8	37	1817	39.47	2781 (61.4)	2.58	445 (65)	77.0 (144)	2.6
9	26	2200	32.41	4009 (42.30)	2.16	412 (45)	70.6 (136)	2.2

В заключение следует отметить, что проведенные параметрические исследования аэротермодинамики носят параметрический характер исследования малогабаритного СА с НТУ для спуска в атмосферу Земли с возможными

условиями входа 7500 м/с $\leq V_e \leq 9000$ м/с и углов входа $5^{\circ} \leq |\theta_e| \leq 15^{\circ}$. Эти результаты могут быть использованы в процессе проектирования для определения аэротермодинамики аналогичного по форме CA с HTУ, не прибегая к проведению расчетов, путем интерполяции данных в приведенных таблицах. Такая необходимость в проектных работах появляется всегда, т.к. баллистические параметры входа в атмосферу неминуемо могут изменяться в поисках оптимального варианта проектируемого изделия.

Библиогрвфический список

- 1. Землянский Б.А., Иванков А.А., Устинов С.Н., Финченко В.С. Современное состояние вопроса о применении технологии надувных элементов конструкции в изделиях ракетно-космической техники, об использовании надувных тормозных устройств в конструкции спускаемых аппаратов и теплозащитные покрытия этих устройств//Вестник РФФИ № 1(57), январь-март 2008, с. 37-63.
- Алексашкин С.Н., Пичхадзе К.М., Устинов С.Н., Финченко В.С.. О проектах и теплозащите спускаемых аппаратов с надувными тормозными устройствами в России и за рубежом // Тепловые процессы в технике. 2010. Т. 2. № 1. С. 230–240.
- 3. Алексашкин С.Н., Пичхадзе К.М., Финченко В.С.. Принципы проектирования спускаемых в атмосферах планет аппаратов с надувными тормозными устройствами//Вестник ФГУП «НПО им. С.А. Лавочкина». Космонавтика и ракетостроение, № 2 (13). 2012. с.4-11.
- 4. Финченко В.С., Пичхадзе К.М. Основы проектирования надувных космических конструкций. Раздел в книге «Проектирование автоматических космических

- аппаратов для фундаментальных научных исследований», под ред. Ефанова В.В., Пичхадзе К.М., НПО им. С.А. Лавочкина. М:. 2012. с.466-527.
- 5. Alifanov O.M., Outchvatov V.I., Pichkhadze K.M. Thermal Protection of Re-entry Vehicles with the Usage of Unflatable Systems// Acta Astronautica. 2003. Vol.53. C. 541-546.
- 6. Алифанов О.М., Будник С. А., Ненарокомов А. В., Нетелев А. В. Идентификация математических моделей теплопереноса в разлагающих материалах// Тепловые процессы в технике. 2011. Т.3, №8.
- 7. Алифанов О.М., Будник С.А., Михайлов В.В., Ненарокомов А.В. Экспериментально-вычислительный комплекс для исследования теплофизических свойств теплотехнических материалов// Тепловые процессы в технике. 2009. Т 1. №2. С.49-60.
- 8. Alifanov O.M., Budnik C.A., Mikhailov V.V., Nenarokomov A.B. An Experimental-Computational System for Materials Thermal Properties Determination and its Application for Spacecraft

Testing // Acta Astronautica». 2007. V..61. P. 341-351.

- 9. Stephen J. Hughes, Robert A. Dillman, Brett R. Starr, Ryan A. Stephan, Michael C. Lindell, Charles J. Player, and Dr. F. McNeil Cheatwood. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview, *Proceedings of the 18th conference «Aerodynamic Decelerator Systems Technology»*, AIAA Paper 2005-1636, 2005.
- 10. James N. Moss, Christopher E. Glass, Brian R. Hollis, John W. Van Norman. Low-Density Aerodynamics of the Inflatable Re-entry Vehicle Experiment (IRVE), *Proceedings of 44th AIAA Aerospace Meeting and Exhibit*, AIAA Paper 2006-1189, 2006.

- 11. Алексашкин С.Н., Иванков А.А., Финченко В.С.. Анализ температурного состояния надувного тормозного устройства по результатам лётно-конструкторских испытаний спускаемого аппарата «Демонстратор-2Р» для определения версии его нештатного полёта. Журнал «Тепловые процессы в технике». Том 1, № 6, 2009, с. 253-258.
- 12. Алифанов О.М., Будник С.А., Нетелев А.В. Патент РФ на полезную модель №81162 10.03.2009 B64G 1l62 «Тормозное устройство для спуска в атмосфере планет». Заявка №2008140907/22, 15.10.2008 RU.
- 13. Алифанов О.М., Будник С.А., Нетелев А.В. Патент РФ на полезную модель №132423 18.03.2013 В64G 1l62 «Развертываемое тормозное устройство для спуска в атмосфере планет».
- 14. Финченко В.С., Пичхадзе К.М., Иванков А.А. Патент РФ № 82679 на полезную модель «Спускаемый аппарат для доставки грузов с пилотируемой орбитальной станции на поверхность Земли». Приоритет 25 декабря 2008 г. Зарегистрировано в Госреестре 10.05 2009 г.
- 15. Голомазов М.М., Иванков А.А. О постановке граничных условий на ударной волне при обтекании затупленных тел гиперзвуковым потоком газа // Вестник ФГУП «НПО им. С.А. Лавочкина», 2012. № 1(12). С. 38-45.
- 16. Белоцерковский О.М., Булекбаев А., Голомазов М.М. и др. Обтекание затупленных тел сверхзвуковым потоком газа // Под ред. О.М. Белоцерковского. М.: Изд-во ВЦ АН СССР, 1967. 401 с.
- 17. Теленин Г.Ф., Тиняков Г.П. Метод расчета пространственного обтекания тел с отошедшей ударной волной // Докл. АН СССР. 1964. 154, № 5 С. 1056-1058.

- 18. Борисов В.М., Иванков А.А. Расчет переноса лучистой энергии при гиперзвуковом обтекании затупленных тел с использованием P_1 и P_2 приближений метода сферических гармоник // Журн. вычислит. математики и мат. физики. 1992. Т. $32. N_2 6. C. 952 966.$
- 19. Иванков А.А. О численном решении задачи прогрева многослойной теплозащиты спускаемого аппарата с учетом уноса массы внешних и внутренних слоев покрытия // Журн. вычислит. математики и мат. физики. 2005. Т. 45. № 7. С. 1279 1288.
- 20. Основы теории полета космических аппаратов / Под ред. Г.С. Нариманова и М.К. Тихонравова. М.: Машиностроение, 1972. 608с.

Работа выполнена в Московском авиационном институте (национальном исследовательском университете) при финансовой поддержке работ по проекту Министерства образования и науки «Инновационный спускаемый аппарат с орбиты, аппарат-демонстратор внедрения аэроупругих развертываемых при полете в космосе и в атмосфере элементов конструкции в космическую технику».