Developing and Completion of a SpaceWire Router based on a Russian-Made Field Programmable Gate Array

System analysis, control and data processing


Аuthors

Matafonov D. E.

Moscow Experimental Design Bureau “Mars”, 1-st Shemilovsky lane 16, building 2, Moscow, 127473, Russia

e-mail: matafonovde@gmail.com

Abstract

The growing popularity of small spacecraft and increasing requirements to the onboard control systems performance necessitate consideration of various variants of architectures. Classic bus solutions are approaching their performance limits due to the increasing number of connected modules, as well as introducing the risk to the system functioning in case of a line failure. Transition to a network architecture is proposed as one of the possible solutions to these problems.

The article considers the FPGA as a possible variant for the degree of integration enhancement to mass and size characteristics reduction, as well as productivity increase. Since domestic designs allow application of the Russian-produced components only, it was rather problematic to implement miscellaneous logics in FPGA, before the 5578TC094 chip appeared. Its research prototype was obtained by FSUE MEDB “Mars” in 2017.

The 5-port breadboard model of a SpaceWire router was fabricated to evaluate the functionality of this FPGA and integrated controller parameters. The built-in LVDS transceivers characteristics were measured, and the SpaceWire channel was tested at speeds of 100 Mbps and 150 Mbps. A “byte doubling” effect was discovered and eliminated at 150 Mbps, which is approaching maximum operating frequency of 160 MHz of the FPGA project. The occupied logic capacity estimation revealed that the router could be combined with the other functional parts in one chip. For example, it could be conjugated with the other interfaces or programmable processor core.

The obtained results suggest a possibility of significant productivity enhancing of the onboard control systems by increasing the rate of exchange, as well as reveal the necessity of further studies in the field of fault-tolerance in the conditions of ionizing radiation.

Keywords:

Field Programmable Gate Array, integration, onboard control system, network architecture, SpaceWire

References

  1. Mullov K.D. Trudy MAI, 2016, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69720

  2. Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, Omar Emam. Mitigation of Radiation Effects in SRAM-Based FPGAs for Space Applications, ACM Computing Surveys, 2015, vol. 47, issue 2, no. 37, doi: 10.1145/2671181

  3. Bezrodnykh I.P., Tyutnev A.P., Semenov V.T. Radiatsionnye effekty v kosmose (Radiactive effects in space), Moscow, AO “Korporatsiya “VNIIEM”, 2017, 64 p.

  4. Connor R. Julien, Brock J. LaMeres, Raymond J. Weber. An FPGA-based Radiation Tolerant SmallSat Computer System, IEEE Aerospace Conference, USA, 2017, doi: 10.1109/AERO.2017.7943634

  5. Grishin V.Yu., Rakitin A.V., Kostrov V.V. Materialy II Vserossiiskoi nauchno-prakticheskoi konferentsii “Kosmicheskaya radiolokatsiya”, (Murom, 25 – 27 June 2013), Murom, IPTs MI VlGU, 2013, pp.52 – 57.

  6. Andreev V.P., Volovich N.V., Glebov V.M. et at. Proektirovanie i ispytanie bortovykh sistem upravleniya (Onboard control systems design and testing), Moscow, Izd-vo MAI-PRINT, 2010, 304 p.

  7. Nepomnyashchii O.V., Postnikov A.I., Goreva V.V. Issledovaniya Naukograda, 2017, vol. 1, no. 1(19), pp. 22 – 29.

  8. Shakhmatov A.V., Vergazov M.Yu., Chekmarev S.A., Khanov, V.Kh. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2012, no. 4(44), pp. 148 – 151.

  9. Khanov V.Kh., Borodina T.V., Antamoshkin A.N. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2014, № 5(57), pp. 153 – 166.

  10. Guo-Ping Liu, Shi j ie Zhang. A Survey on Formation Control of Small Satellites, Proceedings of the IEEE, 2018, vol. 106, no.3, pp. 440 – 442.

  11. Alan D. George, Christopher M. Wilson. Onboard Processing With Hybrid and Reconfigurable Computing on Small Satellites, Proceedings of the IEEE, 2018, vol. 106, no.3, pp. 458 – 459.

  12. Interfeis magistral’nyi posledovatel’nyi sistemy elektronnykh modulei. Obshchie trebovaniya. GOST R 52070-2003 (Bus serial interface of electronic modules system. General requirements. GOST R 52070-2003), available at: http://docs.cntd.ru/document/gost-r-52070-2003

  13. ECSS-E-ST-50-12C Rev.1 DIR3. SpaceWire – Links, nodes, routers and networks, 2015, available at: http://www.ecss.nl/wp-content/uploads/2016/07/ECSS-E-ST-50-12C-Rev.1-DIR323Nov2015.docm

  14. Suvorova E., Sheynin Y., Olenev V., Lavrovskaya I. Multichannel Adaptive Routing for Intensive Data Packet Flows Transmission, International SpaceWire Conference (SpaceWire), Japan, 2016, doi: 10.1109/SpaceWire.2016.7771644

  15. Yamazaki S., Tonouchi T., Sota Y., Hihara H., Tanaka T. Constraint-based Configuration Table Generator for Reliable Path Routing and Safe Timeslot Allocation in SpaceWire Network, International SpaceWire Conference (SpaceWire), Japan, 2016, doi: 10.1109/SpaceWire.2016.7771603

  16. AN 425. Using the Command-Line Jam STAPL Solution for Device Programming, 2017, available at: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an425.

  17. ANSI TIA/EIA-644-A-2001. Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits, Telecommunicatoins Industry Association, 2001, 6 p.

  18. G.Roja Shanthi, B.V.Ramana, K.Sirisha, K.Praveen Kumar. VHDL Implementation of High Speed Fault Injection Tool for Testing FPGA Based Designs, International Journal of Research in Computer and Communication Technology, 2014, vol. 3, issue 11, pp. 1495 – 1500.

  19. Chekmarev S.A. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2014, no. 4(56), pp. 132 – 137.

  20. Yao J., Shaojun W., Ning M., Peng Y. A SEU Test and Simulation Method for Zynq BRAM and Flip-flops, IEEE 13th International Conference on Electronic Measurement & Instruments, China, 2017, doi: 10.1109/ICEMI.2017.8265693


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход