Extra errors analysis of capacitive sensors of launch vehicles fueling system


Zakharov R. S.*, Skvortsov B. V.**, Taipova D. R.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: roman_zaharov-63@mail.ru
**e-mail: aps@ssau.ru
***e-mail: nil54@list.ru


The article regards the problem technological equipment unification for launch vehicles of «Soyuz» family. This problem consists in the fact that in the process of modernization, a vast nomenclature of spaceport equipment and launch vehicles modifications appeared. However, their compatibility is not foreseen herewith at present, i.e. the newer modification of a launch vehicle cannot be connected to the spaceport equipment, and, vice versa, technological equipment of new generation does not fit for launch vehicles of older modification. Besides, simultaneous maintenance of several equipment complexes increases maintenance time and cost. This problem is now being solved by installing a new generation equipment at both launching and technological complexes, leaving the old kit at its place. However, this kind of modernization leads to stoppage of regular operation of launching and technological complexes for the time of installing and testing. Different technological equipment kits have both various operational documentation and differing operation technologies, which enhances requirements to maintenance staff. An operator of the same system of various modifications has to know all specifics of their operation. In case of emergency, he must understand clearly operation logic of that particular system, which he operates at this particular moment. It leads to technical maintenance costs increase, and, thus, to a rocket launching costs increase as well.

As part of this problem solution in the field of equipment for the of fueling level measuring, the article proposes a universal capacitive sensor of the of fueling level with a compensation section for the «Vostochny» spaceport, and the scheme of its connection, as well as the analysis of extra errors of capacitive sensors.

As the result of additional errors studying, associated with the fuel both temperature and environment changes, an analytical expression determining the total temperature coefficient of the level sensor, linking up temperature coefficients of component materials, and fuels under control, was obtained.


launch vehicle, capacitive sensor, fuel level measurement


  1. Guseinov A.B. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=28180

  2. Khusnetdinov I.R. Trudy MAI, 2014, no. 73, available at: http://trudymai.ru/eng/published.php?ID=48480

  3. Skvortsov B.V., Zakharov R.S., Taipova D.R. Izvestiya samarskogo nauchnogo tsentra RAN, 2019, vol. 21, no. 1, pp. 114 – 121.

  4. Skvortsov B.V., Zakharov R.S., Borminskii S.A., Zhivonosnovskaya D.M. Zayavka na izobretenie № 2019107035, 12.03.2019.

  5. Lazarev A.V., Korolev R.A., Zagvozdkin A.Ya. Patent № 2414681 RF. MPK G01F23/26, 20.03.2011.

  6. Shevtsov N.S., Kozhin V.B. Patent № 2150088 RF. MPK G01F 23/26, 27.05.2000.

  7. Dolgov B.K., Balakin S.V. Patent № 2456552 RF. MPK G01F23/26, G01R17/10, 20.07.2012.

  8. Balakin S.V., Serbinov D.L. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107886

  9. Chetpattananondh K., Tapoanoi T., Phukpattaranont P., Jindapetch N. A self-calibration water level measurement using an inter digital capacitive sensor, Sensors and Actuators: A Physical, March 2014, vol. 209, pp. 175 – 182. DOI:10.1016/j.sna.2014.01.040

  10. 10 Cihun-Siyong Alex Gong, Huan Ke Chiu, Li Ren Huang, Cheng Hsun Lin, Zen Dar Hsu, Po-Hsun Tu. Low-Cost Comb-Electrode Capacitive Sensing Device for Liquid-Level measurement, IEEE Journals, 2016, vol. 16, no. 9, pp. 2896 – 2897.

  11. Daniel Paczesny, Grzegorz Tarapata, Marzecki Michal, Ryszard Jachowicz. The Capacitance Sensor for Liquid Level measurement made with Ink-Jet Printing Technology, Eurosensors 2015, Freiburg, Germany, 6 – 9 September 2015.

  12. Reverter Ferran, Li Xiujun, C M Gerard Meijer. Liquid-level Measurement System Based on a Remote Grounded Capacitive Sensor, Journal on Sensors and Actuators, 2007, vol. 138, pp. 1 – 8.

  13. Kirillov V.Yu., Klykov A.V., Zhegov N.A., Nguen V.Kh., Tomilin M.M. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49701

  14. Renne V.T. Elektricheskie kondensatory (Electric capacitors), Moscow, Energiya, 1969, 588 p.

  15. Epshtein S.L. Izmerenie kharakteristik kondensatorov (Measuring characteristics of capacitors), Leningrad, Energiya, 1971, 205 p.

  16. Baxter L.K. Capacitive sensors: design and applications, IEEE Press Marketing, 1997, 302 p.

  17. B. Fellmuth, H. Bothe, N. Haft, J. Melcher. High-precision capacitance bridge for dielectric-constant gas thermometry, IEEE Transactions on Instrumentation and Measurement, 2011, vol. 60, no. 7, pp. 2522 – 2526.

  18. Schmidt J.W., Moldover M.R. Dielectric permittivity of eight gases measured with cross capacitors, Journal of Thermophysical Properties and Thermophysics, 2003, vol. 24, no. 2, pp. 375 – 403.

  19. 19 Balakin S.V., Serbinov D.L. A method of determining the level of dielectric liquids from the parameters of a model of a capacitance fuel level sensor, Measurement Techniques, 2018, no. 10, pp. 998 – 1002.

  20. Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P. Fiziko-khimicheskie i ekspluatatsionnye svoistva reaktivnykh topliv (Physico-chemical and operational properties of jet fuels), Moscow, Khimiya, 1985, 240 p.


mai.ru — informational site MAI

Copyright © 2000-2020 by MAI