Prediction of long-term strength of shaped parts of hydro-gas systems by acoustic emission parameters


DOI: 10.34759/trd-2020-110-4

Аuthors

Phone H. K.*, Sysoev E. O.**, Kuznetsov E. A.***, Sysoev O. E.**

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: phonehtetkyaw18@gmail.com
**e-mail: fks@knastu.ru
***e-mail: workegor@mail.ru

Abstract

High-pressure pipelines for hydro-gas systems are widely employed in aviation industry and machine building. Shaped parts of high-pressure pipelines are being manufactured by pressure shaping of structural materials, made of high-strength stainless steels, aluminum and titanium alloys.

Parts shaping leads to various defects occurrence in the structural material, which significantly affects the long-term strength of the products.

Strength calculations under the simultaneous action of internal pressure, tension, and torsion forces on pipelines mainly account for mechanical characteristics of materials, obtained under simple loads, but individual defects obtained while manufacturing the parts of hydro-gas systems are not regarded. Thus, the need in conducting studies and developing techniques that accounting not only for the materials mechanical characteristics under complex stress conditions, but also the evolutionary processes occurring in the material microstructure on the micro level while these structures manufacturing arises.

To account for the micro-processes dynamics and changes in the microstructure of structural materials while the parts manufacturing by pressure processing, the authors proposed to employ the method of acoustic emission (AE).

Acoustic emission occurs in a material under mechanical stress from the release of energy as the result of micro- and macroscopic phenomena caused by local dynamic rearrangement of the internal structure of the material. As the loading force is applied to the structural material, there are displacements of atoms and compaction of material discontinuities at the initial stage. Then the number, condensation and chaos of primary dislocations are increased, leading to dislocation loops and helical dislocations are formed.

As these transformations commencement the emissions of AE signals of corresponding frequency and amplitude occur, which have an individual fractal dimension in accordance with the stage of the microstructure evolution.

Thus, any change in the structure of the material in a complex stress state, as well as the appearance and healing of defects is accompanied by AE radiation. It means that the quantity and energy of AE signals can determine the stage of degradation of the structural material structure.

The article deals with the technique for strength prediction of the shaped parts of pipelines of Hydro-gas systems by the of AE parameters. When the structural material is deformed during the manufacturing process, along with various trajectories in two-dimensional deformation space under a plane stress-strain state, when damage accumulates in the work piece, that affects its strength and durability. Strength determining of the shaped parts of hydro-gas systems depends on mechanical characteristics of structural materials, methods of deformation and becomes a difficult task, since the defects accumulated by each part are individual. The article demonstrates the process of microstructure changing of aluminum alloys in the process of deformation. The durability prediction of parts fabricated by the process of metal forming was studied. A stable dependence for determining the time to failure for D16 alloy by the AE parameters with a fractal dimension of the of acoustic signals 1 ≤ D2attr ≤ 6 from the effect of internal pressure stresses in the manufacture of parts by process of metal forming was obtained.

The technique proposed in the article allows not only pridicting the long-term strength of shaped parts of pipes of hydro-gas system but also determining the time to failure for these parts by the AE parameters with a fractal dimension of the attractor of acoustic signals 1 ≤ D2attr ≤ 6.

Keywords:

pipelines shaped parts, pipe expansion, acoustic emission, stress-strain state, hydro-gas system

References

  1. Popov E.A. Osnovy teorii listovoi shtampovki (Fundamentals of sheet-metal stamping theory), Moscow, Mashinostroenie, 1977, 278 p.

  2. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem (Theory of metalы pressure shaping), Moscow, Mashinostroenie, 1977, 423 p.

  3. Popov E.A., Kovalev V.G., Shubin I.N. Tekhnologiya i avtomatizatsiya listovoi shtampovki (Technology and automation of sheet-metal stamping), Moscow, MVTU im. N.E. Baumana, 2003, 403 p.

  4. Ser’eznov A.N., Stepanova L.N., Murav’ev V.V. et al. Diagnostika ob«ektov transporta metodom akusticheskoi emissii (Diagnostics of transport objects by the acoustic emission method), Moscow, Mashinostroenie, 2004, 368 p.

  5. Pisarenko G.S., Lebedev A.A. Deformirovanie i prochnost’ materialov pri slozhnom napryazhennom sostoyanii (Deformation and strength of materials at a complex stress state), Kiev, Naukova dumka, 1976, 394 p.

  6. Bashkov O.V., Popkova A.A., Bashkova T.I., Sharkeev Yu.P. The study of staging of the fatigue damage accumulation in the structured titanium samples by acoustic emission method, Tsvetnye Metally, September 2017, no. 9, pp. 84 – 90. DOI: 10.17580/tsm.2017.09.12.

  7. Semashko N.A., Shport V.I., Mar’in B.N. et al. Akusticheskaya emissiya v eksperimental’nom materialovedenii (Acoustic emission in experimental materials science), Moscow, Mashinostroenie, 2002, 240 p.

  8. Sysoev O.E., Bilenko S.V. Uchenye zapiski KnAGTU, 2012, no. 3, pp. 107 – 115.

  9. Bashkov O.V., Popkova A.A., Sharkeev Yu.P., Panin S.V., Eroshenko A.Yu. Acoustic emission analysis of fatigue damages of titanium alloys, AIP Conference Proceedings 1909, 2017, DOI: 10.1063/1.5013693.

  10. Pkhon Khtet K’yav., Sysoev E.O., Kuznetsov E.A., Min ko Khlaing. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109237

  11. Phone Htet kyaw, Sysoev O.E, Kuznetsov E.A, Marin B.N. Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded, Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering, ICTTE 2018, 2018, pp. 213 – 217. DOI:10.1145/3321619.3321685

  12. Tomasz Tomaszewski, Janusz Sempruch. Fatigue life prediction of aluminium profiles for mechanical engineering, Journal of theoretical and applied mechanics, 2017, no. 55 (2), pp. 497 – 507. DOI: 10.15632/jtam-pl.55.2.497.

  13. Orynyak I.V., Ageev S. M. Calculation of reference stresses for circumferential irregular-shaped defects in pipes, Strength of Materials, 2011, vol. 43, no. 6, pp. 673 – 686. DOI: 10.1007/s11223-011-9340-7

  14. Kolykhalov D.G., Sysoev O.E., Ivanov I.N. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74709

  15. Bashkov O.V., Kim V.A., Gadoev G.A. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Proizvodstvennye tekhnologii budushchego: ot sozdaniya k vnedreniyu” Komsomol’sk-na-Amure, Komsomol’skii-na-Amure gosudarstvennyi universitet, 2018, pp. 21 – 26.

  16. Y.J. Kim, C.K. Oh, C.Y. Park, K. Hasegawa. Net-section limit load approach for failure strength estimates of pipes with local wall thinning, International Journal of Pressure Vessels and Piping, 2006, 2006, no. 83, pp. 546 – 555. DOI: 10.1016/j.ijpvp.2006.03.001

  17. Rybaulin A.G., Sidorenko A.S. Trudy MAI, 2015, no. 79, available at: http://trudymai.ru/eng/published.php?ID=55786

  18. Polonik E.N., Surenskii E.A., Fedotov A.A. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=67799

  19. Khokhlov A.V. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75559

  20. Maslov G.A., Lapushkin V.N. Trudy MAI, 2015, 80, available at: http://trudymai.ru/eng/published.php?ID=56918

  21. Lubkov N.V., Spiridonov I.B., Stepanyants A.S. Trudy MAI, 2016, no. 85, available at: http://trudymai.ru/eng/published.php?ID=67501

  22. C.K. Lee, J.J. Scholey, P.D. Wilcox, M.R. Wisnom, M.I. Friswell, B.W. Drinkwater. Guided Wave Acoustic Emission from Fatigue crack growth in Aluminium Plate,’ Advenced Material Research, 2006, vol. 13 – 14, pp. 23 – 28.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход