Theoretical study of temperature regimes when flowing-around axisymmetric bodies being transported on the aircraft external suspension


Аuthors

Maskaykin V. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: vladimir.maskaykin@mail.ru

Abstract

The presented article considers the temperature regimes while flowing-round the transported axisymmetric bodies, which internal temperature is limited. Conditions at which axisymmetric bodies’ transportation happens are represented by the negative ambient temperature and air medium disturbances. The necessity for minimizing the impact of the external ambient effect on the state of the object being transported arises while this problem analysis. The air medium disturbance impact on the object is assumed being in horizontal plane. The set problem was being solved by modelling the solid body flow-around in gaseous medium, including non-stationary heat transfer, employing finite element method. The problem of external ambient static temperature impact was considered to evaluate external factors effect on the axisymmetric body transportation conditions. This problem was solved by modeling non-stationary heat transfer using the finite-difference method. Materials applied in aviation engineering were selected as an axisymmetric body material.

The results of the study demonstrate that cooling time of the axisymmetric body without air ambient disturbance passes faster. It can be assumed that with increasing of the air flow rate, acting on the solid body (excluding the airflow drag effect at a nose portion), its cooling time will be less. Axisymmetric body materials with poor thermal insulation properties compensate rapid body cooling by heat transfer with the external environment (if we consider the temperature regime with air ambient disturbance), in contrast to the axisymmetric body of material with high thermal insulation properties.

Keywords:

non-stationary thermal conductivity, air disturbance of the environment, transportation, aircraft external suspension, axisymmetric body

References

  1. Goryachev O.V., Minchuk S.V. Trudy MAI, 2012, no. 62, available at: http://trudymai.ru/eng/published.php?ID=35541

  2. M'int Z.M., Khlopkov A.Yu. Trudy MAI, 2013, no. 66, available at: http://trudymai.ru/eng/published.php?ID=40250

  3. Kalinin E.K., Dreitser G.A., Kopp I.Z. Myakochin A.S. Effektivnye poverkhnosti teploobmena (Effective heat-exchange surfaces), Moscow, Energoatomizdat, 1998, 408 p.

  4. Nazyrova R.R. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76946

  5. Strizhevskii M.N. Trudy MAI, 2010, no. 38, available at: http://trudymai.ru/eng/published.php?ID=14536&PAGEN_2=2

  6. Egorov I.A. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=67804

  7. Kolesnik S.A., Formalev V.F., Selin I.A. Trudy MAI, 2015, no. 80, available at: http://trudymai.ru/eng/published.php?ID=56941

  8. Efimov V.V. Teoreticheskie metody obespecheniya bezopasnosti letnoi ekspluatatsii vertoletov pri transportirovke gruzov na vneshnei podveske (Theoretical methods for safety ensuring of helicopter flight operations while cargo transporting on an external suspension). Doctor's thesis, Moscow, MGTU GA, 2014, 330 p.

  9. Kryuchkov A.A. Gruzovye perevozki na vozdushnom transporte SSSR (Organizatsiya, tekhnologiya, ekonomika). - M.: Transport, 1983, 232 s.

  10. Klimat SSSR. Raionirovanie i staticheskie parametry klimaticheskikh faktorov dlya tekhnicheskikh tselei. GOST 16350-80 (Regionalization and static parameters of climatic factors for technical purposes), Moscow, Gosudarstvennyi standart SSSR, 1981, 221 p.

  11. Mikheev V.A. Klimatologiya i meteorologiya. – Ul'yanovsk: Ul'yanovskii gosudarstvennyi tekhnicheskii universitet, 2009. – 114 p.

  12. Atmosfera standartnaya. Parametry. GOST 4401-81 (The atmosphere is standard. Parameters, State Standard 4401-81) (Standard atmosphere. Parameters, State Standard 4401-81), Moscow, Gosudarstvennyi komitet SSSR po standartam, 1981, 175 p.

  13. Kutepov A.M., Polyanin A.D., Zapryanov Z.D., Vyaz'min A.V., Kazenin D.A. Khimicheskaya gidrodinamika (Chemical hydrodynamics), Moscow, Kvantum, 1996, 336 p.

  14. Chirkin V.S. Teplofizicheskie svoistva materialov: Spravochnik (Thermo-physical properties of materials. Guide), Moscow, Fizmatgiz, 1959, 356 p.

  15. Beletskii V.M., Krivov G.A. Alyuminievye splavy: Spravochnik (Aluminum alloys (composition, properties, technology, application), Kiev, Komintekh, 2005, 365 p.

  16. Kiselev B.A. Stekloplastiki (Fiberglass plastic), Moscow, Gosudarstvennoe nauchno-tekhnicheskoe izdatel'stvo khimicheskoi literatury, 1961, 240 p.

  17. Samarskii A.A., Vabishchevich P.N Vychislitel'naya teploperedacha (Computational heat transfer), Moscow, Editorial URSS, 2003, 785 p.

  18. Berkovskii B.M., Nogotov E.F. Raznostnye metody issledovaniya zadach teploobmena (Difference methods for studying heat transfer problems), Minsk, Nauka i tekhnika, 1976, 144 p.

  19. Lykov A.V. Teoriya teploprovodnosti (Theory of thermal conductivity), Moscow, Vysshaya shkola, 1967, 600 p.

  20. Kuznetsov G.V., Sheremet M.A. Raznostnye metody resheniya zadach teploprovodnosti (Difference methods for solving heat conduction problems: tutorial), Tomsk, TPU, 2007, 172 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход