Studying Nonreciprocal Device Based on Permanent Magnet for Zeeman Laser Gyroscope


Аuthors

Kudravtsev A. S.*, Savchenko N. A.**, Saveliev I. I.***

Polyus research institute of M.F. Stelmakh, 3-1, Vvedenskogo str., Moscow, 117342, Russia

*e-mail: akudr-delta@yandex.ru
**e-mail: sav4nik@gmail.com
***e-mail: i.saveliev@gmail.com

Abstract

For the first time, the dependence of the frequency non-reciprocity occurring in Zeeman laser gyroscope when the magnetic field of a permanent ring magnet is applied to its active medium was studied with account for the dispersion function nonlinearity of the active medium and non-uniform distribution of the magnetic field along the active medium.

The magnetic field non-uniformity always presents in the non-reciprocal device of Zeeman laser gyroscopes due to the peculiarities of the field distribution of the permanent ring magnet and the monoblock laser design.

The presented work demonstrates the presence of maximum in the dependence of the refractive index on the strength of the magnetic field applied to the medium.

The longitudinal magnetic field non-uniformity of the ring permanent magnet leads to a significant decrease in the amplitude of the frequency bias in the Zeeman laser gyroscope.

The presented work allowed experimentally determine the longitudinal magnetic field non-uniformity.

A technique for evaluation of the frequency bias maximum possible amplitude, which can be obtained in the Zeeman laser gyroscope while its implementation in non-reciprocal device of the ring permanent magnet for the longitudinal magnetic field creating was suggested.

Keywords:

ring Zeeman laser, nonreciprocal device, permanent magnet, solenoid, frequency bias

References

  1. Starovoitov E.I., Yurchik I.A. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109500

  2. Savel'ev V.M., Antonov D.A. Trudy MAI, 2011, no. 45, available at: http://trudymai.ru/eng/published.php?ID=25497&PAGEN_2=2

  3. Luk'yanov D.P., Filatov Yu.V., Golyaev Yu. D., Kuryatov V.N. et al. XX Sankt-Peterburgskaya internatsional'naya konferentsiya po integrirovannym navigatsionnym sistemam, Saint-Petersburg, TsNII Elektropribor, 2013, pp. 36 - 49.

  4. Filatov Yu.V. Opticheskie giroskopy (Optical gyroscopes), Saint–Petersburg, Elektropribor, 2005, 139 p.

  5. Seregin V.V., Kukuev R.M. Lazernye girometry i ikh primenenie (Laser gyrometers and their applications), Moscow, Mashinostroenie, 1990, 287 p.

  6. Privalov V.E. Gazorazryadnye lazery v izmeritel'nykh kompleksakh (Gas-discharge lasers in Measuring Complexes), Leningrad, Sudostroenie, 1977, 152 p.

  7. Azarova V.V., Golyaev Yu.D., Savel'ev I.I. Kvantovaya elektronika, 2015, vol. 45, no. 2, pp. 171 - 179.

  8. Kolbas Yu.Yu., Grushin M.E., Gorshkov V.N. Kvantovaya elektronika, 2018, vol. 48, no. 3, pp. 283 - 289.

  9. Vorob'ev P.G., Kondrakhin A.A., Mel'nichuk G.V., Ulitenko A.I., Chulyaeva E.G. Issledovanie teplovykh rezhimov, chastotno-stabilizirovannykh He-Ne lazerov, Fotonika, 2012, vol. 34, no. 4, pp. 40 – 48.

  10. Vorob'ev P.G., Chulyaeva E.G. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta, 2012, no. 39 (2), pp. 26 – 33.

  11. Konevskii E.I., Kolpakova N.F. Gornyi informatsionno-analiticheskii byulleten,' 2007, vol. 12, no. 12, pp. 291 - 294.

  12. Savel'ev I.I., Kudryavtsev A.S. Patent № 2688952 C1 RF, G01C19/64, 23.05.2019.

  13. Kudryavtsev A.S., Savel'ev I.I., Savchenko N.A. Trudy konferentsii - konkursa molodykh fizikov, 2019, vol. 25, no. 52, pp. 235 – 238.

  14. Kudryavtsev A.S., Savel'ev I.I., Savchenko N.A. 11-yi Vserossiiskii mezhotraslevoi molodezhnyi konkurs nauchno-tekhnicheskikh rabot i proektov «Molodezh' i budushchee aviatsii i kosmonavtiki», Moscow, Izd-vo MAI, 2019, 270 p.

  15. Al'tman A.B., Vernikovskii E.E., Gerberg A.N., Gladyshev P.A., et al. Postoyannye magnity. Spravochnik (Permanent Magnets. Reference Guide), Moscow, Enrgiya, 1971, 376 p.

  16. Vakhitov N.G., Golyaev Yu.D., Dronov I.V., Ivanov M.A., Kolbas Yu.Yu., Krutikov A.P. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana, 2014, no. 2, pp. 10 - 27.

  17. Lemb U. Kvantovaya optika i kvantovaya radiofizika (Quantum optics and quantum radio-physics), Moscow, Mir, 1966, 541 p.

  18. Rybakov B.V., Skulachenko S.S., Khromykh A.M., Yudin I.I. Soviet physics – JETP, 1973, vol. 37, no. 4, pp 582 – 583, available at http://www.jetp.ac.ru/cgi-bin/dn/e_037_04_0582.pdf

  19. Kordover R.Kh., Dzhasedzha T.S., Dzhavan A. Pis'ma po prikladnoi fizike, 1965, vol. 7, no. 12, pp. 322 - 324.

  20. Materialy magnitotverdye spechennye na osnove splava neodim-zhelezo-bor. Klassifikatsiya. Osnovnye parametry. GOST R 52956-2008 (Hard-magnetic sintered materials based on neodymium-iron-boron alloy. Classification. Main parameters. GOST R 52956-2008), Moscow, Standarty, 2008, 12 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход