Phenomenological models of pulse noise from stationary plasma thruster

Aerospace propulsion engineering


Аuthors

Vazhenin N. A.

e-mail: N.Vazhenin@mai.ru

Abstract

As recent studies of thin time structure of electromagnetic emission of stationary plasma thruster (SPT) have shown, such stochastic process, in addition to a purely thermal component, contains a non-thermal component representing stochastic seguence of radio pulses with complicated internal structure.
The purpose of the paper is compare results on electromagnetic emission of stationary plasma thruster obtained by mathematical models and by test.
Mathematical models, suitable for the phenomenological description of self electromagnetic emission of stationary plasma thruster are analysed on the basis of results of test studies for such emission statistical characteristics. The comparative analysis is made for statistical characteristics of signals obtained by test and characteristics of phenomenological models of such signals.
Depending on the SPT operating mode and the frequency range used the models Middlton, Hall, Merts, Vejbull, Laplas or Hilbert frequency range for the description of statistical characteristics of radiation SPT models of Middlton's, may be used of SPT emission. The obtained results allow reasonable approach to the development of mathematical models for the emission of specific types stationary plasma thrusters.
The study presented provides a starting-point for further development of simulation models for stationary plasma thruster emission.
The results obtained can be used to analyze the effects of stationary plasma thruster electromagnetic emission radiation on the operation of satellites radio systems.

Keywords:

space communication, pulse noise, stationary plasma thrusters, mathematical models

References

  1. Vazhenin N.A. Elektronnyi zhurnal "Trudy MAI", 2012, no. 59, available at: www.mai.ru/trudy/published.php?ID=29685 (accessed 23.11.2012)
  2. Vazhenin N.A., Plokhikh A.P. Materialy VIII Mezhdunarodnogo simpoziuma po radiatsionnoy plazmodinamike RPD, Moscow, 2009, issue 1, pp. 24-28.
  3. Plokhikh А.P.,Vazhenin N. F., Kim V., Sidorenko E., Soganova G.V.. Study for the Influence of Stationary Plasma Thruster Operating Modes on its Electromagnetic Emission, The 32nd International Electric Propulsion Conference (IEPC-2011-094), Wiesbaden, Germany, pp.256-258, (695p.).
  4. Hall H.M. A new model for “impulsive” phenomena: Application to atmospheric-noise communications channels, Stanford University Electronics Laboratories Technical Report No. 3412-8 ,7050-7, 1966 179 p.
  5. Furutsu K., Ishida T. Journal of the Radio Research Laboratories , 1960, vol. 7, no. 32, pp. 279-318.
  6. Beckmann P. Amplitude probability distribution of atmospheric radio noise, Radio Science, 1964, vol. 68D, pp. 723-736.
  7. Ottesen H. Electromagnetic compatibility of random man-made noise sources, Ph.D thesis, Department of Electrical Engineering, Univ. of Colorado, Boulder, CO, 1968, 358 p.
  8. Giordano A.A., Haber P., Modeling of atmospheric noise, Radio Science, 1972, vol. 7, no. 11, pp.1011-1023.
  9. Bello P.A., Esposito R.A. New Method for Calculating Probabilities of Error Due to Impulsive Noise , IEEE Trans. on Communication Technology, 1969, vol. Com-17, no 3, p. 368—379.
  10. Bello P.A., Esposito R.A. Error probabilities due to impulsive noise in linear and hard-limited DPSK systems, IEEE Trans. Com. Tech. COM-19, 1971, pp. 14-21.
  11. Ovchinnikov L.M. Radiotehnika, 1973, vol. 28, no.10, pp. 2-6.
  12. Richer W.J., Smits T.I. Numerical evaluation of Rice’s integral representation of the probability density function for Poisson impulsive noise, J. Accoust. Soc. Am. 56. no. 2, pp. 481-496.
  13. Middleton D. Statistical-Physical Models of Electromagnetic Interference, IEEE Trans. Electromagn. Compat, 1977, vol. EMC-19, no. 3, pp. 106-127.
  14. Middleton D. Procedures for Determining the Parameters of the First-Order Canonical Models of Class A and Class B Electromagnetic Interference, IEEE Trans. Electromagn. Compat., 1979, vol. EMC-21, no. 3, pp. 190 — 208.
  15. Middleton D. Canonical and Quasi-Canonical Probability Models of Class A Interference, IEEE Trans. Electromagn. Compat., 1983, vol. EMC-25, no 2, pp. 76 — 106.
  16. Middleton D. Canonical Non-Gaussian Noise Models: Their Implications for Measurement and for Prediction of Receiver Performance , IEEE Trans. Electromagn. Compat., 1979, vol. EMC-21, no 3, pp. 209 - 220.
  17. Volkovskij A.S., Vazhenin N.A.Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol.17, no. 6, pp. 109-119.
  18. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions, U.S. Dept. of Commerce, National Bureau of Standards, Applied Mathematics Series, no. 55, 1964, 344 p.
  19. Suraweera H.A., Chai C., Shentu J., Armstrong J. Analysis of Impulse Noise Mitigation Techniques for Digital Television Systems, Proc. 8th International OFDM Workshop (InOWo '04), Hamburg, Germany, 2003, pp. 172-176.
  20. Shao M., Nikias C.L. Signal processing with fractional lower order moments: Stable processes and their applications, Proc. IEEE, 1993 vol. 81, no. 7, pp. 986-1010.
  21. Ambike S., Ilow J., Hatzinakos D. Detection for Binary Transmission in a Mixture of Gaussisn Noise and Impulsive Noise Modeled as an Alpha-Stable Process, IEEE Signal Processing Letters, 1994, vol.1, no.3, pp.55-57.
  22. Tsihrintzis G.A., Nikias C.L. Fast estimation of the parameters of alfa-stable impulsive interference using asymptotic extreme value theory, 0-7803-2431-5/95, IEEE 1995. pp.1840-1843.
  23. Lemmon John J. Wideband model of man-made HF noise and interference. Radio Science, Vol. 32, No. 2, 1997, pp. 525-539.
  24. Levin B.R. Teoreticheskie osnovy statisticheskoy radiotehniki (Theoretical basis of statistical radiotecnics), Moscow,' Radio i svjaz', 1989,656 p.
  25. Korzhik V.I., Fink L.M., Shhelkunov K.N. Raschet pomehoustojchivosti sistem peredachi diskretnyh soobschenij (Immunity to Interference Calculation for Digital Communications), Moscow, 'Radio i svjaz', 1981, 231 p.
  26. Nedev N.H. Analysis of the Impact of Impulse Noise in Digital Subscriber Line Systems, a thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, 2003.
  27. Moeyaert V., Mégret P., Froidure J-C., Robette L., Blondel M. Analytical formulation of the error probability of a QPSK transmission impaired by the joint action of Gaussian and impulse noise, Second IASTED International Conference on Communication Systems and Networks, Benalmadena, Spain, 2003, pp. 381-385.
  28. Henkel W., Kesler T.A. Wideband Impulsive Noise Survey in the German Telephone Network: Statistical Description and Modeling. AEU, 1994, vol. 48, no. 6, pp. 277-288.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход