Numerical simulation of aerodynamic asymmetry and a method for providing lateral stability of maneuverable aircraft

Aerodynamics


Аuthors

Golovnev A. V.*, Kotov I. A., Tarasov A. L.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: golovnyev@rambler.ru
**e-mail: andreyt4884@mail.ru

Abstract

The purpose of the work is studying of the possibility of providing lateral stability of maneuverable aircraft at high angles of attack due to the differential cluster deflection of wing leading edge flaps.

Working method consists of the analysis and numerical experiment.

Results of the work. The aerodynamic asymmetry is one of the reasons limiting the admissible angle of attack of modern maneuverable aircraft with wings extension.

Modern airplanes use deflection of wing leading edges to provide smooth steady airflow around the wing leading edge. We suggest to deflect only root section of the wing leading edge, which will allow fix the airflow separation on the front edge of the end sections and to symmetrize flow vortex structure.

A comparison of averaged values and the range of variation of asymmetric roll and yaw moments, as well as the lift-drag ratio of the test aircraft in various configurations deviation sections of wing leading edge flaps is performed.

The calculations were carried out using the method of detached eddy simulation, which allows you to accurately determine the frequency amplitude of asymmetric moments. The features of computational grids were used to calculate the aerodynamic characteristics of the aircraft by means of the method of detached eddy simulation are shown.

Analysis of the oscillation spectrum of the asymmetric rolling and yawing moments was carried out using a continuous wavelet transform.

Application area of the results. The results of this work can be implemented in scientific and design organizations engaged in development of aerodynamic configurations of maneuverable aircraft and control systems, as well as at aviation universities for educational process improvement

Conclusions.

1. Maneuverable aircraft reaching high angles of attack is accompanied by asymmetric rolling and yawing moments.

2. The differential deflection of wing leading edge flaps of the wing at high angles of attack allows reduce the average values of the amplitude and low-frequency components of asymmetrical lateral moments acting on the aircraft.

3. The differential deflection of wing leading edge flaps leads to a slight decrease in the aerodynamic qualities of the aircraft.

Keywords:

aerodynamic asymmetry, wavelet analysis, deflection of the wing leading edge flaps, detached eddy simulation

References

  1. Berko V.S., Bocharov V.Ya., Byushgens A.G., Byushgens G.S., Va il’ev L.E., Gladkov A.A., Goman M.G., Zhivov Yu.G., Ivanyushkin A.K., Irodov R.D., Kurochkin L.A., Lebed’ N.K., Medvezhnikova L.A., Mikeladze V.G., On’kova L.N., Pavlenko A.A., Pavlyukov E.V., Petrov K.P., Sokolov V.D., Sukhanov V.L., Ustinov A.S., Fedorenko G.A., Yakimov G.L. Aerodinamika, ustoichivost’ i upravlyaemost’ sverkhzvukovykh samoletov (Aerodynamics, stability and controllability of supersonic aircraft), Moscow, Nauka. Fizmatlit, 1998, 816 p.

  2. Voevodin A.V., Gaifullin A.M., Petrov A.S. Uchenye zapiski TsAGI, 2012, vol. 18, no. 3, pp. 45-50.

  3. Goman M.G., Khabrov A.N. Matematicheskaya model’ opisaniya aerodinamicheskikh kharakteristik na bol’shikh uglakh ataki i bifurkatsionnyi analiz kriticheskikh rezhimov poleta (Mathematical model of describing the aerodynamic characteristics at high angles of attack and bifurcation analysis of the critical flight modes), Moscow, TsAGI, 1998, 126 p.

  4. Zanin B.Yu., Maslov A.A., Postnikov B.V., Sidorenko A.A., Fomin V.M., Malmuth N. Aeromekhanika i gazovaya dinamika, 2003, no. 4. pp. 46-52.

  5. Akimov A.N., Vorob’ev V.V., Demchenko O.F., Dolzhenkov N.N., Matveev A.I., Podobedov V.A. Osobennosti proektirovaniya legkikh boevykh i uchebno-trenirovochnykh samoletov (Design features of the light combat and training aircraft), Moscow, Mashinostroenie, 2005, 368 p.

  6. Volkov K.N., Emel’yanov V.N. Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii (Large eddy simulation in calculations of turbulent flows), Moscow, Fizmatlit, 2008, 370 p.

  7. Smirnov E.M., Garbaruk A.V. Techeniya vyazkoi zhidkosti i modeli turbulentnosti: metody rascheta turbulentnykh techenii (Viscous liquid flow and turbulence model: methods for calculating turbulent flows), St. Petersburg, Izdatel’stvo politekhnicheskogo instituta, 2010, 127 p.

  8. Spalart P.R. Young-Person’s Guide to Detached-Eddy Simulation Grids, Hanover, NASA, 2011, 23 p.

  9. Pashkov O.A. Energoeffektivnost’ i energosberezheniya, 2013, no. 19, pp. 33-38.

  10. Yakovlev A.N. Vvedenie v veivlet-preobrazovaniya (Introduction to wavelet transformations), Novosibirsk, NGTU, 2003, 104 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход