Methodology of the development of heat-stressed parts of gas turbine engines

Thermal engines, electric propulsion and power plants for flying vehicles


Аuthors

Vikulin A. V.*, Yaroslavtsev N. L.**, Zemlyanaya V. A.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vav106@yandex.ru
**e-mail: yaroslavcevnl@mati.ru
***e-mail: chesnovava@mail.ru

Abstract

The objects of research are heat-stressed parts of high-temperature gas turbine engines (GTD) and gas turbine plants (GTP) with the complex system of branched channels.

The purpose of research is the development of the methodology for thermal designing of cooled structures of high-temperature gas turbines of 5-6th generation GTE and GTP on the basis of the experimental database.

The creation of blade modifications differing in the cooling channels design by the conventional technique of the investment casting is connected with great difficulties and is time-consuming technological process. Therefore the expeditious conduction of the research of a number of versions of the modified blades is so difficult. The developed methodology will allow to solve the complex problem aimed at increasing the reliability and service life of modern gas turbine engines while minimizing experimental studies and, consequently, material costs and power inputs.

For the achievement of this aim in the paper the manufacturing techniques of the modifications of the cooled gas turbine blades such as modular development, implantation technology, development of a ceramic rod were considered and analyzed.

For the creation of a basic original project of the blade at the early stage of its designing when there is not the executed in metal version, the choice of types of heat exchange intensifiers, of their arrangement and geometrical parameters is carried out proceeding from the analysis of empirical and experimental data. The subsequent development of the original project of the basic blade on the thermal state is carried out on the simplified on geometry and material versions executed with the use of universal equipment. The modular development technology allows to adjust the design of sel ected area in the blade on the thermal state, but there are difficulties with observance of the uniqueness conditions and the boundary conditions at interface of the areas of an internal cavity.

For the purpose of the adjustment of the blade on the thermal state at the later stages of its designing when there is the casting version of the basic blade, the technology of the development with expeditious changing in the design of cooling channels by implantation method is developed. This technology allows to carry out changes in geometry of the internal cavity on the prototype and to receive directly a qualitative assessment of the thermal state obtained as a result of the carried-out changes.

For the final development of the gas turbine blade on the thermal state and for its adjustment on the workability in the course of a mass production, the technology of the development of the ceramic rod forming the cooling channels in the blade modifications is used. This technology of the development of the design of the ceramic rod allows to carry out expeditiously the constructive changes in the internal cavity of the blade, however requires the accurate equipment and highly qualified specialists.

Scientific novelty of researches consists in the development of the comprehensive program of thermal designing and improvement of the constructions of heat-stressed parts of GTD and GTP with the purpose to increase the reliability and service life of the engine based on the high-informative methods of research and control of their functional parameters.

The practical significance of the offered methodology of the thermal designing consists in decreasing laboriousness and reducing the material costs for experimental adjustment of designs of the cooled gas turbine blades, and also in increasing the accuracy of qualitative assessment of their thermal state. The proposed complex of scientific and technological decisions allows to shift the focus of the experimental work fr om full-scale tests to simulation studies, and thereby to reduce significantly the material costs for the development of the GTD as a whole.

The received samples of the constructive elements of the aircraft equipment can be used in the development and creation of modern and perspective gas turbine engines, and also in the creation of thermo-technical devices.

Keywords:

high-temperature gas turbine, cooled blade, thermal-hydraulic characteristics, liquid-metal thermostat

References

  1. Popov V. G., Vikulin A.V., Yaroslavtsev N.L., Sundukov A.A., Chesnova V.A., Pobezhimovskij E.V. Nauchnye trudy (Vestnik MATI), 2011, no. 18 (90), pp. 50-53.

  2. Kolesnik S.A., Formalev V.F., Selin I.A. Trudy MAI, 2015, no. 80: http://www.mai.ru/science/trudy/published.php?ID=56941

  3. Magerramova L.A., Vasil’ev B E. Vestnik Moskovskogo aviatsionnogo instituta, 2012, vol. 19, no. 5, pp. 89-97.

  4. Vikulin A.V., Popov V.G., Yaroslavtsev N.L., Chesnova V.A. Aviatsionnaya promyshlennost’, 2012, no. 3, pp. 20-24.

  5. Gorelov Yu.G., Strokach E.A. Vestnik Moskovskogo aviatsionnogo instituta, 2016, vol. 23, no. 1, pp. 80-85.

  6. Popov V.G., Vikulin A.V., Chesnova V.A., Markelov M.S. Aviatsionnaya promyshlennost’, 2013, no. 1, pp. 17-20.

  7. Popov V.G., Vikulin A.V., Yaroslavtsev N.L., Sundukov A.A., Bormatov S.S., Semenov V.N., Chesnova V.A., Pobezhimovskij E.V. Aviatsionnaya promyshlennost’, 2010, no. 4, pp. 18-22.

  8. Chesnova V.A., Popov V.G., Vikulin A.V. Vestnik Rybinskoj gosudarstvennoj aviatsionnoj tekhnologicheskoj akademii imeni P.A. Solov’eva, 2012, no. 2 (23), pp. 7-11.

  9. Chesnova V.A. Vestnik Moskovskogo aviatsionnogo instituta, 2014, vol. 21, no. 4, pp. 93-108.

  10. Popov V.G, Vikulin A.V., Chesnova V.A. Izvestiya Samarskogo nauchnogo tsentra Rossijskoj akademii nauk, 2013, vol. 15, no. 4-4, pp. 819-824.

  11. Zavalishin I.V., Finogeev A.G. Trudy MAI, 2012, no. 56: http://www.mai.ru/science/trudy/published.php?ID=30157

  12. Shcherbakov M. A.,Vorob’ev D.A., Maslakov S.A., Ravikovich Yu.A. Vestnik Moskovskogo aviatsionnogo instituta, 2013, vol. 20, no.3, pp. 95-103.

  13. Siluyanova M.V., Popova T.V. Trudy MAI, 2016, no. 85: http://www.mai.ru/science/trudy/published.php?ID=66210


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход