Effect of averaging method of solid propellant power plant operating parameters on acoustic vibrations damping factor

Fluid, gas and plasma mechanics


Аuthors

Kuroedov A. A.*, Borisov D. M.**

Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: kaa8000@yandex.ru
**e-mail: borisovdm62@mail.ru

Abstract

The article deals with studying the work process stability in a solid propellant power plant (SPPP) chambers with respect to small pressure perturbations. The research method is based on the energy approach, which allows evaluate the gas flow stability, comparing the disturbances energy inflow and outflow. The aim of this study is the analysis of the two time averaging methods of the SPPP chamber parameters – simplified time averaging widely used in the foreign studies of the SPPP stability (No 1), and common time averaging (No 2). The analysis is based on calculations of the first longitudinal acoustic mode oscillations damping factor for the three types SPPP chambers for various applications with tubular grain.

The acoustic disturbances in steady incompressible gas flow propagating in a cylindrical channel with permeable walls are considered. The first oscillation longitudinal mode damping factor is determined with averaging small isentropic perturbation energy equation over the chamber volume and time.

The damping factor as a function of the tubular grain radius of the three SPPP types calculated by two time averaging methods was obtained through computational experiment.

It was found that for all SPPPs under consideration the work process in combustion chamber is more stable while using averaging No 1 to averaging No 2. The greatest difference was observed for the small-scale SPPP. Relative divergences for small-scale, mid-size and large SSSPs are 61%, 32% and 26% correspondingly.

According to the performed studies, a conclusion was made that the time averaging No 2 is more suitable for practical calculations.

Keywords:

acoustic instability, energy method, damping factor, time averaging

References

  1. Blomshield, F.S Historical perspective of combustion instability in motors: case studies, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 8-11, 2001, Salt Lake City, Utah, 2001, pp. 1-14

  2. Lipanov A.M., Milekhin Yu.M. Vnutrennyaya ballistika RDTT. (Solid Propellant Rocket Motor Internal Ballistics), Moscow, Mashinostroenie, 2007, 504 p.

  3. Kashina I.A., Sal’nikov A.F. Trudy MAI, 2013, no. 65, available at: http://www.mai.ru/science/trudy/published.php?ID=35947

  4. Flandro G.A. Oscillatory Behavior of Liquid Propellant Rockets. Scramjets and Thrust Augmenters, available at: http://www.academia.edu/8750208/Flandro_7ISICP

  5. Flandro G.A. Effects of vorticity on rocket combustion stability. Journal of Propulsion and Power, 1995, vol. 11, no. 4, pp. 607-625.

  6. Flandro G.A., Majdalani J. Aeroacoustic instability in rockets. AIAA Journal, 2003, vol. 41, no.2, pp. 485-497.

  7. Rienstra S.W., Hirschberg A. An Introduction to Acoustics, Eindhoven University of Technology, 2014, 296 p.

  8. Myers M.K. Transport of energy by disturbances in arbitrary steady flow. Journal. Fluid Mechanics, 1991, vol. 226, pp. 383-400.

  9. Culick F.E.C. Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket. AIAA Journal, 1966, vol. 4, no. 8, pp. 1462-1464.

  10. Dunlap R., Wllloughby P.G., Hermsen R.W. Flowfield in the combustion chamber of a solid propellant rocket motor. AIAA Journal, 1974, vol. 12, no. 10, pp. 1440-1442.

  11. Flandro G.A. On Flow Turning. AIAA Paper 95-2530, 1995, pp. 1-11.

  12. Chibli H.A., Majdalani J., Flandro G.A. Fundamental growth rate corrections in rocket motor stability calculations. AIAA Paper 2002-3610, 2002, pp. 1-19.

  13. Majdalani J., Fischbach S.R., Flandro G.A. Improved energy normalization function in rocket motor stability calculation. Aerospace Science and Technology, 2006, no. 10, pp. 495-500.

  14. Majdalani J., Flandro G.A., Fischbach S.R. Some rotational corrections to the acoustic energy equation in injection-driven enclosures. Physics of fluids, 2005, vol.17, pp. 074102-1—074102-20.

  15. Fischbach S.R., Flandro G.A., Majdalani J. Volume-to-surface transformations of rocket stability integrals. AIAA Paper 2004-4053, 2004, pp. 1-15.

  16. Fischbach S.R., Majdalani J., Flandro G.A. Verification and validation of rocket stability integral transformations. AIAA Paper 2006-4001, 2005, pp. 1-15.

  17. Bekker R. Teoriya teploty (Theory of heat), Moscow, Jenergija, 1974, 504 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход