Multi-criteria optimization of the trajectory of an aircraft in the augmentation area of the satellite navigation system

Radiolocation and radio navigation


Erokhin V. V.

Irkutsk branch of Moscow State Technical University of Civil Aviation, (MSTUCA), 3, Kommunarov str., Irkutsk, 664047, Russia



A promising trend for improving organization and management of air traffic is the implementation of the concept of communications, navigation, surveillance and air traffic management, developed by the international civil aviation organization. This concept is based on the principles of broadcasting automatic dependent surveillance (ADS-B), which is a digital system for airborne transmission of flight path parameters by data of the global navigation satellite system (GNSS). To solve the problems of high-precision positioning and of flight safety, a ground-based augmentation system is used. When controlling the flight path, the aircraft position relative to the ADS-B ground station changes, thus affecting the Position Dilution of Precision (PDOP). In addition, when the distance from a local area augmentation system (LAAS) increases, the effect of decorrelation factors on the compensation of systematic errors increases as well.
Thus, the task of the trajectory managing arises under the condition of simultaneous minimization of several optimality criteria − minimization of the range and duration of flight, positioning error and reduction of the distance to the LAAS. The minima of individual particular criteria is generally achieved with varioius parameters of the flight path, therefore, in addition, the need to select the rules for decision-making in the multi-criteria optimization problem taking into account the existing constraints arises.
The goal of the work consists in synthesizing and studying the algorithm controlling an aircraft flight path in the terminal area when implementing the concept of area navigation based on multi-criteria optimization methods.
The algorithm for multi-criteria optimization of the flight trajectory in the area of GNSS augmentation is synthesized based on minimax control. It is shown, that the developed algorithm provides a compromise solution by the vector optimization criterion. Controlled flight trajectory allows reduce the range and flight time compared to the classical flight with high accuracy in determining the parameters of the flight path.
Thus, the developed algorithm for controlling trajectories allows us to find a compromise solution of the multi-criteria optimization problem. The obtained results can be applied for planning routes and flight profiles, as well as for programming the construction of spatial trajectories in order to achieve high accuracy of position fixing.


global navigation satellite system, trajectory, multi-criterion optimization, augmentation, area navigation, optimal control, Kalman filter


  1. Global’nyi aeronavigatsionnyi plan na 2013-2028g.g. Mezhdunarodnaya organizatsiya grazhdanskoi aviatsii. Doc 9750-AN/963, available at:

  2. Vovk V.I., Lipin A.V., Saraiskii Yu.N. Zonal’naya navigatsiya (Zone navigation), Saint Petersburg, Ministerstvo transporta RF. Gos. sluzhba grazhdanskoi aviatsii. Akademiya grazhdanskoi aviatsii, 2004, 123 p.

  3. Emel’jancev G.I., Stepanov A.P. Peshehonov V.G. Integrirovannye inercial’no-sputnikovye sistemy orientacii i navigacii (Integrated inertial-satellite systems of orientation and navigation), GNC RF AO "Koncern «CNII “Jelektropribor”, 2016, 394 p.

  4. Perova A.I., Harisov V.N. GLONASS. Principy postroenija i funkcionirovanija (GLONASS. Principles of construction and operation), Moscow, Radiotehnika, 2010, 800 p.

  5. Revnivyh S.G., Serdjukov A.I., Bolkunov A.I. Trudy MAI, 2009, no. 34, available at:

  6. Ivanov V.F., Koshkarov A.S. Trudy MAI, 2017, no. 93, available at:

  7. Serkin F.B., Vazhenin N.A., Veitsel’ A.V. Trudy MAI, 2016, no. 86, available at:

  8. Aref’ev R.O., Aref’eva N.G., Skrypnik O.N. Trudy MAI, 2017, no. 92, URL: available at:

  9. Akhmedov R.M., Bibutov A.A., Vasil’ev A.V. Avtomatizirovannye sistemy upravleniya vozdushnym dvizheniem: Novye informatsionnye tekhnologii v aviatsii (Automated air traffic control systems: New information technologies in aviation), Saint-Petersburg, Politekhnika, 2004, 446 p.

  10. Doukas D, Berends J, Rees M, Kerkhofs G CNS/ATM Ground Station and Service Status Reports; SUR.ET1.ST05.2000-STD-16-01; European Air Traffic Management: Brussels, Belgium. 2009.

  11. Abdulaziz A, Yaro A.S., Adam A.A., Kabir M.T., Salau H.B. Optimum Receiver for Decoding Automatic Dependent Surveillance Broadcast (ADS-B) Signals, American Journal of Signal Processing, 2015, ol. 5, no. 2, pp. 23-31.

  12. 12. Chen Y-H, Lo S., Akos D.M., Wong G., Enge P.A. Testbed for Studying Automatic Dependent Surveillance Broadcast (ADS-B) Based Range and Positioning Performance to Support Alternative Position Navigation and Timing (APNT), Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS- 2013), Nashville, TN: 09-2013, pp. 263-273

  13. Cho T., Lee C., Choi S. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy. Sensors 2013, 13, 4122-4137; doi:10.3390/s130404122.

  14. Philips R. Relative and Differential GPS, System Implication and Innovative Applications of Satellite Navigation, AGARD Lecture Series 207, 1996, pp. 5.1-5.22

  15. Shtoier R. Mnogokriterial’naya optimizatsiya. Teoriya, vychisleniya i prilozheniya (Multi-criteria optimization. Theory, calculations and applications), Moscow, Radio i svyaz’, 1992, 504 p.

  16. Mikhalevich V.S., Volkovich V.L. Vychislitel’nye metody issledovaniya i proektirovaniya slozhnykh system (Computational methods of research and design of complex systems), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1982, 287 p

  17. Germeier Yu.B. Vvedenie v teoriyu issledovaniya operatsii (Introduction to the theory of operations research), Moscow, Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1971, 384 p.

  18. Mashunin Yu.K. Metody i modeli vektornoi optimizatsii (Methods and models of vector optimization), Moscow, Nauka, 1986, 143 p.

  19. Karlin S. Matematicheskie metody v teorii igr, programmirovanii i ekonomike (Mathematical methods in the theory of games, programming and economics), Moscow, Mir, 1964, 839 p

  20. Voronov E.M., Repkin A.L., Savchuk A.M., Sychev S.I. Vestnik MGTU im. N.E. Baumana. Seriya: Priborostroenie, 2014, no. 5, pp. 3 – 39

  21. Seidzh E.P., Uait Ch.S. Optimal’noe upravlenie sistemami (Optimal control of systems), Moscow, Radio i svyaz’, 1982, 392 p.

  22. Lazarev Yu.N. Upravlenie traektoriyami aerokosmicheskikh apparatov (Trajectory control of aerospace vehicles), Samara, Samarskii nauchnyi Tsentr RAN, 2007, 275 p.

  23. Geras’kin M.I., Lazarev Yu.N. Izvestiya Akademii nauk. Teoriya i sistemy upravleniya, 2001, no. 5, pp. 168-174.

  24. Lazarev Yu.N., Geras’kin M.I. Izvestiya Samarskogo nauchnogo tsentra RAN, 2001, no. 1, pp. 80-85.

  25. Aleshechkin A.M., Erokhin V.V. Trajectory optimization of dynamically controlled objects in INS/GNSS integrated navigation system, Gyroscopy and Navigation, January 2017, vol. 8, no. 1, pp. 15 – 23.

  26. Polak E. Chislennye metody optimizatsii. Edinyi podkhod (Numerical optimization methods. Single approach), Moscow, Mir, 1974, 376 p

  27. Letov A.M. Avtomatika i telemekhanika, 1961, no. 4, pp. 436–441; no. 5, pp. 526–531; no. 6, pp. 661–665; 1962, no. 4, pp. 425–435.

  28. Kalman R.E. Contribution to the Theory of Optimal Control, Bullet Soc. Math. Mech., 1960. Vol. 5, no. 1, pp. 102–109.

  29. Kalman R.E., Busy R. New Results in Linear Filtering and Prediction Theory, J. Basic Eng. Trans. ASME, 1961, vol. 83, pp. 95–108.

Download — informational site MAI

Copyright © 2000-2022 by MAI